6,513 research outputs found

    Counting Steiner triple systems with classical parameters and prescribed rank

    Full text link
    By a famous result of Doyen, Hubaut and Vandensavel \cite{DHV}, the 2-rank of a Steiner triple system on 2nβˆ’12^n-1 points is at least 2nβˆ’1βˆ’n2^n -1 -n, and equality holds only for the classical point-line design in the projective geometry PG(nβˆ’1,2)PG(n-1,2). It follows from results of Assmus \cite{A} that, given any integer tt with 1≀t≀nβˆ’11 \leq t \leq n-1, there is a code Cn,tC_{n,t} containing representatives of all isomorphism classes of STS(2nβˆ’1)(2^n-1) with 2-rank at most 2nβˆ’1βˆ’n+t2^n -1 -n + t. Using a mixture of coding theoretic, geometric, design theoretic and combinatorial arguments, we prove a general formula for the number of distinct STS(2nβˆ’1)(2^n-1) with 2-rank at most 2nβˆ’1βˆ’n+t2^n -1 -n + t contained in this code. This generalizes the only previously known cases, t=1t=1, proved by Tonchev \cite{T01} in 2001, t=2t=2, proved by V. Zinoviev and D. Zinoviev \cite{ZZ12} in 2012, and t=3t=3 (V. Zinoviev and D. Zinoviev \cite{ZZ13}, \cite{ZZ13a} (2013), D. Zinoviev \cite{Z16} (2016)), while also unifying and simplifying the proofs. This enumeration result allows us to prove lower and upper bounds for the number of isomorphism classes of STS(2nβˆ’1)(2^n-1) with 2-rank exactly (or at most) 2nβˆ’1βˆ’n+t2^n -1 -n + t. Finally, using our recent systematic study of the ternary block codes of Steiner triple systems \cite{JT}, we obtain analogous results for the ternary case, that is, for STS(3n)(3^n) with 3-rank at most (or exactly) 3nβˆ’1βˆ’n+t3^n -1 -n + t. We note that this work provides the first two infinite families of 2-designs for which one has non-trivial lower and upper bounds for the number of non-isomorphic examples with a prescribed pp-rank in almost the entire range of possible ranks.Comment: 27 page

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page

    Deterministic Construction of Binary, Bipolar and Ternary Compressed Sensing Matrices

    Full text link
    In this paper we establish the connection between the Orthogonal Optical Codes (OOC) and binary compressed sensing matrices. We also introduce deterministic bipolar mΓ—nm\times n RIP fulfilling Β±1\pm 1 matrices of order kk such that m≀O(k(log⁑2n)log⁑2kln⁑log⁑2k)m\leq\mathcal{O}\big(k (\log_2 n)^{\frac{\log_2 k}{\ln \log_2 k}}\big). The columns of these matrices are binary BCH code vectors where the zeros are replaced by -1. Since the RIP is established by means of coherence, the simple greedy algorithms such as Matching Pursuit are able to recover the sparse solution from the noiseless samples. Due to the cyclic property of the BCH codes, we show that the FFT algorithm can be employed in the reconstruction methods to considerably reduce the computational complexity. In addition, we combine the binary and bipolar matrices to form ternary sensing matrices ({0,1,βˆ’1}\{0,1,-1\} elements) that satisfy the RIP condition.Comment: The paper is accepted for publication in IEEE Transaction on Information Theor

    A Multi-Kernel Multi-Code Polar Decoder Architecture

    Get PDF
    Polar codes have received increasing attention in the past decade, and have been selected for the next generation of wireless communication standard. Most research on polar codes has focused on codes constructed from a 2Γ—22\times2 polarization matrix, called binary kernel: codes constructed from binary kernels have code lengths that are bound to powers of 22. A few recent works have proposed construction methods based on multiple kernels of different dimensions, not only binary ones, allowing code lengths different from powers of 22. In this work, we design and implement the first multi-kernel successive cancellation polar code decoder in literature. It can decode any code constructed with binary and ternary kernels: the architecture, sized for a maximum code length NmaxN_{max}, is fully flexible in terms of code length, code rate and kernel sequence. The decoder can achieve frequency of more than 11 GHz in 6565 nm CMOS technology, and a throughput of 615615 Mb/s. The area occupation ranges between 0.110.11 mm2^2 for Nmax=256N_{max}=256 and 2.012.01 mm2^2 for Nmax=4096N_{max}=4096. Implementation results show an unprecedented degree of flexibility: with Nmax=4096N_{max}=4096, up to 5555 code lengths can be decoded with the same hardware, along with any kernel sequence and code rate
    • …
    corecore