35 research outputs found

    Generalized Tensor Summation Compressive Sensing Network (GTSNET) : An Easy to Learn Compressive Sensing Operation

    Get PDF
    The efforts in compressive sensing (CS) literature can be divided into two groups: finding a measurement matrix that preserves the compressed information at its maximum level, and finding a robust reconstruction algorithm. In the traditional CS setup, the measurement matrices are selected as random matrices, and optimization-based iterative solutions are used to recover the signals. Using random matrices when handling large or multi-dimensional signals is cumbersome especially when it comes to iterative optimizations. Recent deep learning-based solutions increase reconstruction accuracy while speeding up recovery, but jointly learning the whole measurement matrix remains challenging. For this reason, state-of-the-art deep learning CS solutions such as convolutional compressive sensing network (CSNET) use block-wise CS schemes to facilitate learning. In this work, we introduce a separable multi-linear learning of the CS matrix by representing the measurement signal as the summation of the arbitrary number of tensors. As compared to block-wise CS, tensorial learning eases blocking artifacts and improves performance, especially at low measurement rates (MRs), such as {MRs} < 0.1. The software implementation of the proposed network is publicly shared at https://github.com/mehmetyamac/GTSNET.Peer reviewe

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train

    Efficient Design, Training, and Deployment of Artificial Neural Networks

    Get PDF
    Over the last decade, artificial neural networks, especially deep neural networks, have emerged as the main modeling tool in Machine Learning, allowing us to tackle an increasing number of real-world problems in various fields, most notably, in computer vision, natural language processing, biomedical and financial analysis. The success of deep neural networks can be attributed to many factors, namely the increasing amount of data available, the developments of dedicated hardware, the advancements in optimization techniques, and especially the invention of novel neural network architectures. Nowadays, state-of-the-arts neural networks that achieve the best performance in any field are usually formed by several layers, comprising millions, or even billions of parameters. Despite spectacular performances, optimizing a single state-of- the-arts neural network often requires a tremendous amount of computation, which can take several days using high-end hardware. More importantly, it took several years of experimentation for the community to gradually discover effective neural network architectures, moving from AlexNet, VGGNet, to ResNet, and then DenseNet. In addition to the expensive and time-consuming experimentation process, deep neural networks, which require powerful processors to operate during the deployment phase, cannot be easily deployed to mobile or embedded devices. For these reasons, improving the design, training, and deployment of deep neural networks has become an important area of research in the Machine Learning field. This thesis makes several contributions in the aforementioned research area, which can be grouped into two main categories. The first category consists of research works that focus on designing efficient neural network architectures not only in terms of accuracy but also computational complexity. In the first contribution under this category, the computational efficiency is first addressed at the filter level through the incorporation of a handcrafted design for convolutional neural networks, which are the basis of most deep neural networks. More specifically, the multilinear convolution filter is proposed to replace the linear convolution filter, which is a fundamental element in a convolutional neural network. The new filter design not only better captures multidimensional structures inherent in CNNs but also requires far fewer parameters to be estimated. While using efficient algebraic transforms and approximation techniques to tackle the design problem can significantly reduce the memory and computational footprint of neural network models, this approach requires a lot of trial and error. In addition, the simple neuron model used in most neural networks nowadays, which only performs a linear transformation followed by a nonlinear activation, cannot effectively mimic the diverse activities of biological neurons. For this reason, the second and third contributions transition from a handcrafted, manual design approach to an algorithmic approach in which the type of transformations performed by each neuron as well as the topology of neural networks are optimized in a systematic and completely data-dependent manner. As a result, the algorithms proposed in the second and third contributions are capable of designing highly accurate and compact neural networks while requiring minimal human efforts or intervention in the design process. Despite significant progress has been made to reduce the runtime complexity of neural network models on embedded devices, the majority of them have been demonstrated on powerful embedded devices, which are costly in applications that require large-scale deployment such as surveillance systems. In these scenarios, complete on-device processing solutions can be infeasible. On the contrary, hybrid solutions, where some preprocessing steps are conducted on the client side while the heavy computation takes place on the server side, are more practical. The second category of contributions made in this thesis focuses on efficient learning methodologies for hybrid solutions that take into ac- count both the signal acquisition and inference steps. More concretely, the first contribution under this category is the formulation of the Multilinear Compressive Learning framework in which multidimensional signals are compressively acquired, and inference is made based on the compressed signals, bypassing the signal reconstruction step. In the second contribution, the relationships be- tween the input signal resolution, the compression rate, and the learning performance of Multilinear Compressive Learning systems are empirically analyzed systematically, leading to the discovery of a surrogate performance indicator that can be used to approximately rank the learning performances of different sensor configurations without conducting the entire optimization process. Nowadays, many communication protocols provide support for adaptive data transmission to maximize the data throughput and minimize energy consumption depending on the network’s strength. The last contribution of this thesis proposes an extension of the Multilinear Compressive Learning framework with an adaptive compression capability, which enables us to take advantage of the adaptive rate transmission feature in existing communication protocols to maximize the informational content throughput of the whole system. Finally, all methodological contributions of this thesis are accompanied by extensive empirical analyses demonstrating their performance and computational advantages over existing methods in different computer vision applications such as object recognition, face verification, human activity classification, and visual information retrieval

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In dieser Arbeit werden spektral codierte multispektrale Lichtfelder, wie sie von einer Lichtfeldkamera mit einem spektral codierten Mikrolinsenarray aufgenommen werden, untersucht. FĂŒr die Rekonstruktion der codierten Lichtfelder werden zwei Methoden entwickelt und im Detail ausgewertet. ZunĂ€chst wird eine vollstĂ€ndige Rekonstruktion des spektralen Lichtfelds entwickelt, die auf den Prinzipien des Compressed Sensing basiert. Um die spektralen Lichtfelder spĂ€rlich darzustellen, werden 5D-DCT-Basen sowie ein Ansatz zum Lernen eines Dictionary untersucht. Der konventionelle vektorisierte Dictionary-Lernansatz wird auf eine tensorielle Notation verallgemeinert, um das Lichtfeld-Dictionary tensoriell zu faktorisieren. Aufgrund der reduzierten Anzahl von zu lernenden Parametern ermöglicht dieser Ansatz grĂ¶ĂŸere effektive AtomgrĂ¶ĂŸen. Zweitens wird eine auf Deep Learning basierende Rekonstruktion der spektralen Zentralansicht und der zugehörigen DisparitĂ€tskarte aus dem codierten Lichtfeld entwickelt. Dabei wird die gewĂŒnschte Information direkt aus den codierten Messungen geschĂ€tzt. Es werden verschiedene Strategien des entsprechenden Multi-Task-Trainings verglichen. Um die QualitĂ€t der Rekonstruktion weiter zu verbessern, wird eine neuartige Methode zur Einbeziehung von Hilfslossfunktionen auf der Grundlage ihrer jeweiligen normalisierten GradientenĂ€hnlichkeit entwickelt und gezeigt, dass sie bisherige adaptive Methoden ĂŒbertrifft. Um die verschiedenen RekonstruktionsansĂ€tze zu trainieren und zu bewerten, werden zwei DatensĂ€tze erstellt. ZunĂ€chst wird ein großer synthetischer spektraler Lichtfelddatensatz mit verfĂŒgbarer DisparitĂ€t Ground Truth unter Verwendung eines Raytracers erstellt. Dieser Datensatz, der etwa 100k spektrale Lichtfelder mit dazugehöriger DisparitĂ€t enthĂ€lt, wird in einen Trainings-, Validierungs- und Testdatensatz aufgeteilt. Um die QualitĂ€t weiter zu bewerten, werden sieben handgefertigte Szenen, so genannte Datensatz-Challenges, erstellt. Schließlich wird ein realer spektraler Lichtfelddatensatz mit einer speziell angefertigten spektralen Lichtfeldreferenzkamera aufgenommen. Die radiometrische und geometrische Kalibrierung der Kamera wird im Detail besprochen. Anhand der neuen DatensĂ€tze werden die vorgeschlagenen RekonstruktionsansĂ€tze im Detail bewertet. Es werden verschiedene Codierungsmasken untersucht -- zufĂ€llige, regulĂ€re, sowie Ende-zu-Ende optimierte Codierungsmasken, die mit einer neuartigen differenzierbaren fraktalen Generierung erzeugt werden. DarĂŒber hinaus werden weitere Untersuchungen durchgefĂŒhrt, zum Beispiel bezĂŒglich der AbhĂ€ngigkeit von Rauschen, der Winkelauflösung oder Tiefe. Insgesamt sind die Ergebnisse ĂŒberzeugend und zeigen eine hohe RekonstruktionsqualitĂ€t. Die Deep-Learning-basierte Rekonstruktion, insbesondere wenn sie mit adaptiven Multitasking- und Hilfslossstrategien trainiert wird, ĂŒbertrifft die Compressed-Sensing-basierte Rekonstruktion mit anschließender DisparitĂ€tsschĂ€tzung nach dem Stand der Technik

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In dieser Arbeit werden spektral kodierte multispektrale Lichtfelder untersucht, wie sie von einer Lichtfeldkamera mit einem spektral kodierten Mikrolinsenarray aufgenommen werden. FĂŒr die Rekonstruktion der kodierten Lichtfelder werden zwei Methoden entwickelt, eine basierend auf den Prinzipien des Compressed Sensing sowie eine Deep Learning Methode. Anhand neuartiger synthetischer und realer DatensĂ€tze werden die vorgeschlagenen RekonstruktionsansĂ€tze im Detail evaluiert

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail

    Machine Learning for Metasurfaces Design and Their Applications

    Full text link
    Metasurfaces (MTSs) are increasingly emerging as enabling technologies to meet the demands for multi-functional, small form-factor, efficient, reconfigurable, tunable, and low-cost radio-frequency (RF) components because of their ability to manipulate waves in a sub-wavelength thickness through modified boundary conditions. They enable the design of reconfigurable intelligent surfaces (RISs) for adaptable wireless channels and smart radio environments, wherein the inherently stochastic nature of the wireless environment is transformed into a programmable propagation channel. In particular, space-limited RF applications, such as communications and radar, that have strict radiation requirements are currently being investigated for potential RIS deployment. The RIS comprises sub-wavelength units or meta-atoms, which are independently controlled and whose geometry and material determine the spectral response of the RIS. Conventionally, designing RIS to yield the desired EM response requires trial and error by iteratively investigating a large possibility of various geometries and materials through thousands of full-wave EM simulations. In this context, machine/deep learning (ML/DL) techniques are proving critical in reducing the computational cost and time of RIS inverse design. Instead of explicitly solving Maxwell's equations, DL models learn physics-based relationships through supervised training data. The ML/DL techniques also aid in RIS deployment for numerous wireless applications, which requires dealing with multiple channel links between the base station (BS) and the users. As a result, the BS and RIS beamformers require a joint design, wherein the RIS elements must be rapidly reconfigured. This chapter provides a synopsis of DL techniques for both inverse RIS design and RIS-assisted wireless systems.Comment: Book chapter, 70 pages, 12 figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:2101.09131, arXiv:2009.0254

    Employing data fusion & diversity in the applications of adaptive signal processing

    Get PDF
    The paradigm of adaptive signal processing is a simple yet powerful method for the class of system identification problems. The classical approaches consider standard one-dimensional signals whereby the model can be formulated by flat-view matrix/vector framework. Nevertheless, the rapidly increasing availability of large-scale multisensor/multinode measurement technology has render no longer sufficient the traditional way of representing the data. To this end, the author, who from this point onward shall be referred to as `we', `us', and `our' to signify the author myself and other supporting contributors i.e. my supervisor, my colleagues and other overseas academics specializing in the specific pieces of research endeavor throughout this thesis, has applied the adaptive filtering framework to problems that employ the techniques of data diversity and fusion which includes quaternions, tensors and graphs. At the first glance, all these structures share one common important feature: invertible isomorphism. In other words, they are algebraically one-to-one related in real vector space. Furthermore, it is our continual course of research that affords a segue of all these three data types. Firstly, we proposed novel quaternion-valued adaptive algorithms named the n-moment widely linear quaternion least mean squares (WL-QLMS) and c-moment WL-LMS. Both are as fast as the recursive-least-squares method but more numerically robust thanks to the lack of matrix inversion. Secondly, the adaptive filtering method is applied to a more complex task: the online tensor dictionary learning named online multilinear dictionary learning (OMDL). The OMDL is partly inspired by the derivation of the c-moment WL-LMS due to its parsimonious formulae. In addition, the sequential higher-order compressed sensing (HO-CS) is also developed to couple with the OMDL to maximally utilize the learned dictionary for the best possible compression. Lastly, we consider graph random processes which actually are multivariate random processes with spatiotemporal (or vertex-time) relationship. Similar to tensor dictionary, one of the main challenges in graph signal processing is sparsity constraint in the graph topology, a challenging issue for online methods. We introduced a novel splitting gradient projection into this adaptive graph filtering to successfully achieve sparse topology. Extensive experiments were conducted to support the analysis of all the algorithms proposed in this thesis, as well as pointing out potentials, limitations and as-yet-unaddressed issues in these research endeavor.Open Acces
    corecore