183 research outputs found

    Total Jensen divergences: Definition, Properties and k-Means++ Clustering

    Full text link
    We present a novel class of divergences induced by a smooth convex function called total Jensen divergences. Those total Jensen divergences are invariant by construction to rotations, a feature yielding regularization of ordinary Jensen divergences by a conformal factor. We analyze the relationships between this novel class of total Jensen divergences and the recently introduced total Bregman divergences. We then proceed by defining the total Jensen centroids as average distortion minimizers, and study their robustness performance to outliers. Finally, we prove that the k-means++ initialization that bypasses explicit centroid computations is good enough in practice to guarantee probabilistically a constant approximation factor to the optimal k-means clustering.Comment: 27 page

    Bregman Voronoi Diagrams: Properties, Algorithms and Applications

    Get PDF
    The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connexion with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation. Finally, we give some applications of Bregman Voronoi diagrams which are of interest in the context of computational geometry and machine learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures

    Clustering constrained by dependencies

    Get PDF
    Clustering is the unsupervised method of grouping data samples to form a partition of a given dataset. Such grouping is typically done based on homogeneity assumptions of clusters over an attribute space and hence the precise definition of the similarity metric affects the clusters inferred. In recent years, new formulations of clustering have emerged that posit indirect constraints on clustering, typically in terms of preserving dependencies between data samples and auxiliary variables. These formulations ïŹnd applications in bioinformatics, web mining, social network analysis, and many other domains. The purpose of this survey is to provide a gentle introduction to these formulations, their mathematical assumptions, and the contexts under which they are applicable
    • 

    corecore