13,335 research outputs found

    A Survey on Multi-Task Learning

    Full text link
    Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL. First, we classify different MTL algorithms into several categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach, and decomposition approach, and then discuss the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, batch MTL models are difficult to handle this situation and online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing are reviewed to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works. Finally, we present theoretical analyses and discuss several future directions for MTL

    Kernelized LRR on Grassmann Manifolds for Subspace Clustering

    Full text link
    Low rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional sub- space structures embedded in data. One of its successful applications is subspace clustering, by which data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is naturally described as a clustering problem on Grassmann manifold. The novelty of this paper is to generalize LRR on Euclidean space onto an LRR model on Grassmann manifold in a uniform kernelized LRR framework. The new method has many applications in data analysis in computer vision tasks. The proposed models have been evaluated on a number of practical data analysis applications. The experimental results show that the proposed models outperform a number of state-of-the-art subspace clustering methods

    Feature Concatenation Multi-view Subspace Clustering

    Full text link
    Multi-view clustering aims to achieve more promising clustering results than single-view clustering by exploring the multi-view information. Since statistic properties of different views are diverse, even incompatible, few approaches implement multi-view clustering based on the concatenated features directly. However, feature concatenation is a natural way to combine multiple views. To this end, this paper proposes a novel multi-view subspace clustering approach dubbed Feature Concatenation Multi-view Subspace Clustering (FCMSC). Specifically, by exploring the consensus information, multi-view data are concatenated into a joint representation firstly, then, l2,1l_{2,1}-norm is integrated into the objective function to deal with the sample-specific and cluster-specific corruptions of multiple views for benefiting the clustering performance. Furthermore, by introducing graph Laplacians of multiple views, a graph regularized FCMSC is also introduced to explore both the consensus information and complementary information for clustering. It is noteworthy that the obtained coefficient matrix is not derived by directly applying the Low-Rank Representation (LRR) to the joint view representation simply. Finally, an effective algorithm based on the Augmented Lagrangian Multiplier (ALM) is designed to optimized the objective functions. Comprehensive experiments on six real world datasets illustrate the superiority of the proposed methods over several state-of-the-art approaches for multi-view clustering

    Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation

    Full text link
    This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling. Unlike the existing methods that all adopt an off-the-shelf tensor low-rank norm without considering the special characteristics of the tensor in MVSC, we design a novel structured tensor low-rank norm tailored to MVSC. Specifically, we explicitly impose a symmetric low-rank constraint and a structured sparse low-rank constraint on the frontal and horizontal slices of the tensor to characterize the intra-view and inter-view relationships, respectively. Moreover, the two constraints could be jointly optimized to achieve mutual refinement. On the basis of the novel tensor low-rank norm, we formulate MVSC as a convex low-rank tensor recovery problem, which is then efficiently solved with an augmented Lagrange multiplier based method iteratively. Extensive experimental results on five benchmark datasets show that the proposed method outperforms state-of-the-art methods to a significant extent. Impressively, our method is able to produce perfect clustering. In addition, the parameters of our method can be easily tuned, and the proposed model is robust to different datasets, demonstrating its potential in practice

    Kernelized Low Rank Representation on Grassmann Manifolds

    Full text link
    Low rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. One of its successful applications is subspace clustering which means data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is naturally described as a clustering problem on Grassmann manifold. The novelty of this paper is to generalize LRR on Euclidean space onto an LRR model on Grassmann manifold in a uniform kernelized framework. The new methods have many applications in computer vision tasks. Several clustering experiments are conducted on handwritten digit images, dynamic textures, human face clips and traffic scene sequences. The experimental results show that the proposed methods outperform a number of state-of-the-art subspace clustering methods.Comment: 13 page

    A review of heterogeneous data mining for brain disorders

    Full text link
    With rapid advances in neuroimaging techniques, the research on brain disorder identification has become an emerging area in the data mining community. Brain disorder data poses many unique challenges for data mining research. For example, the raw data generated by neuroimaging experiments is in tensor representations, with typical characteristics of high dimensionality, structural complexity and nonlinear separability. Furthermore, brain connectivity networks can be constructed from the tensor data, embedding subtle interactions between brain regions. Other clinical measures are usually available reflecting the disease status from different perspectives. It is expected that integrating complementary information in the tensor data and the brain network data, and incorporating other clinical parameters will be potentially transformative for investigating disease mechanisms and for informing therapeutic interventions. Many research efforts have been devoted to this area. They have achieved great success in various applications, such as tensor-based modeling, subgraph pattern mining, multi-view feature analysis. In this paper, we review some recent data mining methods that are used for analyzing brain disorders

    Multi-view Low-rank Sparse Subspace Clustering

    Get PDF
    Most existing approaches address multi-view subspace clustering problem by constructing the affinity matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a joint subspace representation by constructing affinity matrix shared among all views. Relying on the importance of both low-rank and sparsity constraints in the construction of the affinity matrix, we introduce the objective that balances between the agreement across different views, while at the same time encourages sparsity and low-rankness of the solution. Related low-rank and sparsity constrained optimization problem is for each view solved using the alternating direction method of multipliers. Furthermore, we extend our approach to cluster data drawn from nonlinear subspaces by solving the corresponding problem in a reproducing kernel Hilbert space. The proposed algorithm outperforms state-of-the-art multi-view subspace clustering algorithms on one synthetic and four real-world datasets

    Joint Embedding of Meta-Path and Meta-Graph for Heterogeneous Information Networks

    Full text link
    Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph.Extensive experiments on two real datasets demonstrate thatMEGA and MEGA++ are more effective than state-of-the-art approaches.Comment: accepted by ICBK 1

    Supervised Nonnegative Matrix Factorization to Predict ICU Mortality Risk

    Full text link
    ICU mortality risk prediction is a tough yet important task. On one hand, due to the complex temporal data collected, it is difficult to identify the effective features and interpret them easily; on the other hand, good prediction can help clinicians take timely actions to prevent the mortality. These correspond to the interpretability and accuracy problems. Most existing methods lack of the interpretability, but recently Subgraph Augmented Nonnegative Matrix Factorization (SANMF) has been successfully applied to time series data to provide a path to interpret the features well. Therefore, we adopted this approach as the backbone to analyze the patient data. One limitation of the raw SANMF method is its poor prediction ability due to its unsupervised nature. To deal with this problem, we proposed a supervised SANMF algorithm by integrating the logistic regression loss function into the NMF framework and solved it with an alternating optimization procedure. We used the simulation data to verify the effectiveness of this method, and then we applied it to ICU mortality risk prediction and demonstrated its superiority over other conventional supervised NMF methods.Comment: 7 Pages, 2 figure

    Vectorial Dimension Reduction for Tensors Based on Bayesian Inference

    Full text link
    Dimensionality reduction for high-order tensors is a challenging problem. In conventional approaches, higher order tensors are `vectorized` via Tucker decomposition to obtain lower order tensors. This will destroy the inherent high-order structures or resulting in undesired tensors, respectively. This paper introduces a probabilistic vectorial dimensionality reduction model for tensorial data. The model represents a tensor by employing a linear combination of same order basis tensors, thus it offers a mechanism to directly reduce a tensor to a vector. Under this expression, the projection base of the model is based on the tensor CandeComp/PARAFAC (CP) decomposition and the number of free parameters in the model only grows linearly with the number of modes rather than exponentially. A Bayesian inference has been established via the variational EM approach. A criterion to set the parameters (factor number of CP decomposition and the number of extracted features) is empirically given. The model outperforms several existing PCA-based methods and CP decomposition on several publicly available databases in terms of classification and clustering accuracy.Comment: Submiting to TNNL
    • …
    corecore