51 research outputs found

    Non-local Low-rank Cube-based Tensor Factorization for Spectral CT Reconstruction

    Full text link
    Spectral computed tomography (CT) reconstructs material-dependent attenuation images with the projections of multiple narrow energy windows, it is meaningful for material identification and decomposition. Unfortunately, the multi-energy projection dataset always contains strong complicated noise and result in the projections has a lower signal-noise-ratio (SNR). Very recently, the spatial-spectral cube matching frame (SSCMF) was proposed to explore the non-local spatial-spectrum similarities for spectral CT. The method constructs such a group by clustering up a series of non-local spatial-spectrum cubes. The small size of spatial patch for such a group make SSCMF fails to encode the sparsity and low-rank properties. In addition, the hard-thresholding and collaboration filtering operation in the SSCMF are also rough to recover the image features and spatial edges. While for all steps are operated on 4-D group, we may not afford such huge computational and memory load in practical. To avoid the above limitation and further improve image quality, we first formulate a non-local cube-based tensor instead of the group to encode the sparsity and low-rank properties. Then, as a new regularizer, Kronecker-Basis-Representation (KBR) tensor factorization is employed into a basic spectral CT reconstruction model to enhance the ability of extracting image features and protecting spatial edges, generating the non-local low-rank cube-based tensor factorization (NLCTF) method. Finally, the split-Bregman strategy is adopted to solve the NLCTF model. Both numerical simulations and realistic preclinical mouse studies are performed to validate and assess the NLCTF algorithm. The results show that the NLCTF method outperforms the other competitors

    Low-Rank Tensor Completion by Truncated Nuclear Norm Regularization

    Full text link
    Currently, low-rank tensor completion has gained cumulative attention in recovering incomplete visual data whose partial elements are missing. By taking a color image or video as a three-dimensional (3D) tensor, previous studies have suggested several definitions of tensor nuclear norm. However, they have limitations and may not properly approximate the real rank of a tensor. Besides, they do not explicitly use the low-rank property in optimization. It is proved that the recently proposed truncated nuclear norm (TNN) can replace the traditional nuclear norm, as a better estimation to the rank of a matrix. Thus, this paper presents a new method called the tensor truncated nuclear norm (T-TNN), which proposes a new definition of tensor nuclear norm and extends the truncated nuclear norm from the matrix case to the tensor case. Beneficial from the low rankness of TNN, our approach improves the efficacy of tensor completion. We exploit the previously proposed tensor singular value decomposition and the alternating direction method of multipliers in optimization. Extensive experiments on real-world videos and images demonstrate that the performance of our approach is superior to those of existing methods.Comment: Accepted as a poster presentation at the 24th International Conference on Pattern Recognition in 20-24 August 2018, Beijing, Chin

    A Splitting-Based Iterative Algorithm for GPU-Accelerated Statistical Dual-Energy X-Ray CT Reconstruction

    Full text link
    When dealing with material classification in baggage at airports, Dual-Energy Computed Tomography (DECT) allows characterization of any given material with coefficients based on two attenuative effects: Compton scattering and photoelectric absorption. However, straightforward projection-domain decomposition methods for this characterization often yield poor reconstructions due to the high dynamic range of material properties encountered in an actual luggage scan. Hence, for better reconstruction quality under a timing constraint, we propose a splitting-based, GPU-accelerated, statistical DECT reconstruction algorithm. Compared to prior art, our main contribution lies in the significant acceleration made possible by separating reconstruction and decomposition within an ADMM framework. Experimental results, on both synthetic and real-world baggage phantoms, demonstrate a significant reduction in time required for convergence

    Deep Learning based Spectral CT Imaging

    Full text link
    Spectral computed tomography (CT) has attracted much attention in radiation dose reduction, metal artifacts removal, tissue quantification and material discrimination. The x-ray energy spectrum is divided into several bins, each energy-bin-specific projection has a low signal-noise-ratio (SNR) than the current-integrating counterpart, which makes image reconstruction a unique challenge. Traditional wisdom is to use prior knowledge based iterative methods. However, this kind of methods demands a great computational cost. Inspired by deep learning, here we first develop a deep learning based reconstruction method; i.e., U-net with L_p^p-norm, Total variation, Residual learning, and Anisotropic adaption (ULTRA). Specifically, we emphasize the Various Multi-scale Feature Fusion and Multichannel Filtering Enhancement with a denser connection encoding architecture for residual learning and feature fusion. To address the image deblurring problem associated with the L22L_2^2-loss, we propose a general LppL_p^p-loss, p>0p>0 Furthermore, the images from different energy bins share similar structures of the same object, the regularization characterizing correlations of different energy bins is incorporated into the LppL_p^p-loss function, which helps unify the deep learning based methods with traditional compressed sensing based methods. Finally, the anisotropically weighted total variation is employed to characterize the sparsity in the spatial-spectral domain to regularize the proposed network. In particular, we validate our ULTRA networks on three large-scale spectral CT datasets, and obtain excellent results relative to the competing algorithms. In conclusion, our quantitative and qualitative results in numerical simulation and preclinical experiments demonstrate that our proposed approach is accurate, efficient and robust for high-quality spectral CT image reconstruction

    Truncated nuclear norm regularization for low-rank tensor completion

    Full text link
    Recently, low-rank tensor completion has become increasingly attractive in recovering incomplete visual data. Considering a color image or video as a three-dimensional (3D) tensor, existing studies have put forward several definitions of tensor nuclear norm. However, they are limited and may not accurately approximate the real rank of a tensor, and they do not explicitly use the low-rank property in optimization. It is proved that the recently proposed truncated nuclear norm (TNN) can replace the traditional nuclear norm, as an improved approximation to the rank of a matrix. In this paper, we propose a new method called the tensor truncated nuclear norm (T-TNN), which suggests a new definition of tensor nuclear norm. The truncated nuclear norm is generalized from the matrix case to the tensor case. With the help of the low rankness of TNN, our approach improves the efficacy of tensor completion. We adopt the definition of the previously proposed tensor singular value decomposition, the alternating direction method of multipliers, and the accelerated proximal gradient line search method in our algorithm. Substantial experiments on real-world videos and images illustrate that the performance of our approach is better than those of previous methods.Comment: arXiv admin note: substantial text overlap with arXiv:1712.0070

    DECT-MULTRA: Dual-Energy CT Image Decomposition With Learned Mixed Material Models and Efficient Clustering

    Full text link
    Dual energy computed tomography (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Image-domain decomposition operates directly on CT images using linear matrix inversion, but the decomposed material images can be severely degraded by noise and artifacts. This paper proposes a new method dubbed DECT-MULTRA for image-domain DECT material decomposition that combines conventional penalized weighted-least squares (PWLS) estimation with regularization based on a mixed union of learned transforms (MULTRA) model. Our proposed approach pre-learns a union of common-material sparsifying transforms from patches extracted from all the basis materials, and a union of cross-material sparsifying transforms from multi-material patches. The common-material transforms capture the common properties among different material images, while the cross-material transforms capture the cross-dependencies. The proposed PWLS formulation is optimized efficiently by alternating between an image update step and a sparse coding and clustering step, with both of these steps having closed-form solutions. The effectiveness of our method is validated with both XCAT phantom and clinical head data. The results demonstrate that our proposed method provides superior material image quality and decomposition accuracy compared to other competing methods

    A New Low-Rank Tensor Model for Video Completion

    Full text link
    In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm or t-TNN for short. The twist tensor denotes a 3-way tensor representation to laterally store 2D data slices in order. On one hand, t-TNN convexly relaxes the tensor multi-rank of the twist tensor in the Fourier domain, which allows an efficient computation using FFT. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a non-stationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.Comment: 8 pages, 11 figures, 1 tabl

    On the Fusion of Compton Scatter and Attenuation Data for Limited-view X-ray Tomographic Applications

    Full text link
    In this paper we demonstrate the utility of fusing energy-resolved observations of Compton scattered photons with traditional attenuation data for the joint recovery of mass density and photoelectric absorption in the context of limited view tomographic imaging applications. We begin with the development of a physical and associated numerical model for the Compton scatter process. Using this model, we propose a variational approach recovering these two material properties. In addition to the typical data-fidelity terms, the optimization functional includes regularization for both the mass density and photoelectric coefficients. We consider a novel edge-preserving method in the case of mass density. To aid in the recovery of the photoelectric information, we draw on our recent method in \cite{r15} and employ a non-local regularization scheme that builds on the fact that mass density is more stably imaged. Simulation results demonstrate clear advantages associated with the use of both scattered photon data and energy resolved information in mapping the two material properties of interest. Specifically, comparing images obtained using only conventional attenuation data with those where we employ only Compton scatter photons and images formed from the combination of the two, shows that taking advantage of both types of data for reconstruction provides far more accurate results

    Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery

    Full text link
    Recovering a low-rank tensor from incomplete information is a recurring problem in signal processing and machine learning. The most popular convex relaxation of this problem minimizes the sum of the nuclear norms of the unfoldings of the tensor. We show that this approach can be substantially suboptimal: reliably recovering a KK-way tensor of length nn and Tucker rank rr from Gaussian measurements requires Ω(rnK−1)\Omega(r n^{K-1}) observations. In contrast, a certain (intractable) nonconvex formulation needs only O(rK+nrK)O(r^K + nrK) observations. We introduce a very simple, new convex relaxation, which partially bridges this gap. Our new formulation succeeds with O(r⌊K/2⌋n⌈K/2⌉)O(r^{\lfloor K/2 \rfloor}n^{\lceil K/2 \rceil}) observations. While these results pertain to Gaussian measurements, simulations strongly suggest that the new norm also outperforms the sum of nuclear norms for tensor completion from a random subset of entries. Our lower bound for the sum-of-nuclear-norms model follows from a new result on recovering signals with multiple sparse structures (e.g. sparse, low rank), which perhaps surprisingly demonstrates the significant suboptimality of the commonly used recovery approach via minimizing the sum of individual sparsity inducing norms (e.g. l1l_1, nuclear norm). Our new formulation for low-rank tensor recovery however opens the possibility in reducing the sample complexity by exploiting several structures jointly.Comment: Slight modifications are made in this second version (mainly, Lemma 5

    Low-dose spectral CT reconstruction using L0 image gradient and tensor dictionary

    Full text link
    Spectral computed tomography (CT) has a great superiority in lesion detection, tissue characterization and material decomposition. To further extend its potential clinical applications, in this work, we propose an improved tensor dictionary learning method for low-dose spectral CT reconstruction with a constraint of image gradient L0-norm, which is named as L0TDL. The L0TDL method inherits the advantages of tensor dictionary learning (TDL) by employing the similarity of spectral CT images. On the other hand, by introducing the L0-norm constraint in gradient image domain, the proposed method emphasizes the spatial sparsity to overcome the weakness of TDL on preserving edge information. The alternative direction minimization method (ADMM) is employed to solve the proposed method. Both numerical simulations and real mouse studies are perform to evaluate the proposed method. The results show that the proposed L0TDL method outperforms other competing methods, such as total variation (TV) minimization, TV with low rank (TV+LR), and TDL methods
    • …
    corecore