18 research outputs found

    Link Prediction via Generalized Coupled Tensor Factorisation

    Full text link
    This study deals with the missing link prediction problem: the problem of predicting the existence of missing connections between entities of interest. We address link prediction using coupled analysis of relational datasets represented as heterogeneous data, i.e., datasets in the form of matrices and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links

    HyperLearn: A Distributed Approach for Representation Learning in Datasets With Many Modalities

    Get PDF
    Multimodal datasets contain an enormous amount of relational information, which grows exponentially with the introduction of new modalities. Learning representations in such a scenario is inherently complex due to the presence of multiple heterogeneous information channels. These channels can encode both (a) inter-relations between the items of different modalities and (b) intra-relations between the items of the same modality. Encoding multimedia items into a continuous low-dimensional semantic space such that both types of relations are captured and preserved is extremely challenging, especially if the goal is a unified end-to-end learning framework. The two key challenges that need to be addressed are: 1) the framework must be able to merge complex intra and inter relations without losing any valuable information and 2) the learning model should be invariant to the addition of new and potentially very different modalities. In this paper, we propose a flexible framework which can scale to data streams from many modalities. To that end we introduce a hypergraph-based model for data representation and deploy Graph Convolutional Networks to fuse relational information within and across modalities. Our approach provides an efficient solution for distributing otherwise extremely computationally expensive or even unfeasible training processes across multiple-GPUs, without any sacrifices in accuracy. Moreover, adding new modalities to our model requires only an additional GPU unit keeping the computational time unchanged, which brings representation learning to truly multimodal datasets. We demonstrate the feasibility of our approach in the experiments on multimedia datasets featuring second, third and fourth order relations

    Structure-revealing data fusion

    Get PDF
    BACKGROUND: Analysis of data from multiple sources has the potential to enhance knowledge discovery by capturing underlying structures, which are, otherwise, difficult to extract. Fusing data from multiple sources has already proved useful in many applications in social network analysis, signal processing and bioinformatics. However, data fusion is challenging since data from multiple sources are often (i) heterogeneous (i.e., in the form of higher-order tensors and matrices), (ii) incomplete, and (iii) have both shared and unshared components. In order to address these challenges, in this paper, we introduce a novel unsupervised data fusion model based on joint factorization of matrices and higher-order tensors. RESULTS: While the traditional formulation of coupled matrix and tensor factorizations modeling only shared factors fails to capture the underlying structures in the presence of both shared and unshared factors, the proposed data fusion model has the potential to automatically reveal shared and unshared components through modeling constraints. Using numerical experiments, we demonstrate the effectiveness of the proposed approach in terms of identifying shared and unshared components. Furthermore, we measure a set of mixtures with known chemical composition using both LC-MS (Liquid Chromatography - Mass Spectrometry) and NMR (Nuclear Magnetic Resonance) and demonstrate that the structure-revealing data fusion model can (i) successfully capture the chemicals in the mixtures and extract the relative concentrations of the chemicals accurately, (ii) provide promising results in terms of identifying shared and unshared chemicals, and (iii) reveal the relevant patterns in LC-MS by coupling with the diffusion NMR data. CONCLUSIONS: We have proposed a structure-revealing data fusion model that can jointly analyze heterogeneous, incomplete data sets with shared and unshared components and demonstrated its promising performance as well as potential limitations on both simulated and real data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2105-15-239) contains supplementary material, which is available to authorized users
    corecore