12 research outputs found

    Tensor Contraction Layers for Parsimonious Deep Nets

    Get PDF
    Tensors offer a natural representation for many kinds of data frequently encountered in machine learning. Images, for example, are naturally represented as third order tensors, where the modes correspond to height, width, and channels. Tensor methods are noted for their ability to discover multi-dimensional dependencies, and tensor decompositions in particular, have been used to produce compact low-rank approximations of data. In this paper, we explore the use of tensor contractions as neural network layers and investigate several ways to apply them to activation tensors. Specifically, we propose the Tensor Contraction Layer (TCL), the first attempt to incorporate tensor contractions as end-to-end trainable neural network layers. Applied to existing networks, TCLs reduce the dimensionality of the activation tensors and thus the number of model parameters. We evaluate the TCL on the task of image recognition, augmenting two popular networks (AlexNet, VGG). The resulting models are trainable end-to-end. Applying the TCL to the task of image recognition, using the CIFAR100 and ImageNet datasets, we evaluate the effect of parameter reduction via tensor contraction on performance. We demonstrate significant model compression without significant impact on the accuracy and, in some cases, improved performance

    Stochastically Rank-Regularized Tensor Regression Networks

    Get PDF
    Over-parametrization of deep neural networks has recently been shown to be key to their successful training. However, it also renders them prone to overfitting and makes them expensive to store and train. Tensor regression networks significantly reduce the number of effective parameters in deep neural networks while retaining accuracy and the ease of training. They replace the flattening and fully-connected layers with a tensor regression layer, where the regression weights are expressed through the factors of a low-rank tensor decomposition. In this paper, to further improve tensor regression networks, we propose a novel stochastic rank-regularization. It consists of a novel randomized tensor sketching method to approximate the weights of tensor regression layers. We theoretically and empirically establish the link between our proposed stochastic rank-regularization and the dropout on low-rank tensor regression. Extensive experimental results with both synthetic data and real world datasets (i.e., CIFAR-100 and the UK Biobank brain MRI dataset) support that the proposed approach i) improves performance in both classification and regression tasks, ii) decreases overfitting, iii) leads to more stable training and iv) improves robustness to adversarial attacks and random noise
    corecore