26 research outputs found

    Preserving Specificity in Federated Graph Learning for fMRI-based Neurological Disorder Identification

    Full text link
    Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive approach to examining abnormal brain connectivity associated with brain disorders. Graph neural network (GNN) gains popularity in fMRI representation learning and brain disorder analysis with powerful graph representation capabilities. Training a general GNN often necessitates a large-scale dataset from multiple imaging centers/sites, but centralizing multi-site data generally faces inherent challenges related to data privacy, security, and storage burden. Federated Learning (FL) enables collaborative model training without centralized multi-site fMRI data. Unfortunately, previous FL approaches for fMRI analysis often ignore site-specificity, including demographic factors such as age, gender, and education level. To this end, we propose a specificity-aware federated graph learning (SFGL) framework for rs-fMRI analysis and automated brain disorder identification, with a server and multiple clients/sites for federated model aggregation and prediction. At each client, our model consists of a shared and a personalized branch, where parameters of the shared branch are sent to the server while those of the personalized branch remain local. This can facilitate knowledge sharing among sites and also helps preserve site specificity. In the shared branch, we employ a spatio-temporal attention graph isomorphism network to learn dynamic fMRI representations. In the personalized branch, we integrate vectorized demographic information (i.e., age, gender, and education years) and functional connectivity networks to preserve site-specific characteristics. Representations generated by the two branches are then fused for classification. Experimental results on two fMRI datasets with a total of 1,218 subjects suggest that SFGL outperforms several state-of-the-art approaches

    Face-to-Face Contrastive Learning for Social Intelligence Question-Answering

    Full text link
    Creating artificial social intelligence - algorithms that can understand the nuances of multi-person interactions - is an exciting and emerging challenge in processing facial expressions and gestures from multimodal videos. Recent multimodal methods have set the state of the art on many tasks, but have difficulty modeling the complex face-to-face conversational dynamics across speaking turns in social interaction, particularly in a self-supervised setup. In this paper, we propose Face-to-Face Contrastive Learning (F2F-CL), a graph neural network designed to model social interactions using factorization nodes to contextualize the multimodal face-to-face interaction along the boundaries of the speaking turn. With the F2F-CL model, we propose to perform contrastive learning between the factorization nodes of different speaking turns within the same video. We experimentally evaluated the challenging Social-IQ dataset and show state-of-the-art results

    TextMI: Textualize Multimodal Information for Integrating Non-verbal Cues in Pre-trained Language Models

    Full text link
    Pre-trained large language models have recently achieved ground-breaking performance in a wide variety of language understanding tasks. However, the same model can not be applied to multimodal behavior understanding tasks (e.g., video sentiment/humor detection) unless non-verbal features (e.g., acoustic and visual) can be integrated with language. Jointly modeling multiple modalities significantly increases the model complexity, and makes the training process data-hungry. While an enormous amount of text data is available via the web, collecting large-scale multimodal behavioral video datasets is extremely expensive, both in terms of time and money. In this paper, we investigate whether large language models alone can successfully incorporate non-verbal information when they are presented in textual form. We present a way to convert the acoustic and visual information into corresponding textual descriptions and concatenate them with the spoken text. We feed this augmented input to a pre-trained BERT model and fine-tune it on three downstream multimodal tasks: sentiment, humor, and sarcasm detection. Our approach, TextMI, significantly reduces model complexity, adds interpretability to the model's decision, and can be applied for a diverse set of tasks while achieving superior (multimodal sarcasm detection) or near SOTA (multimodal sentiment analysis and multimodal humor detection) performance. We propose TextMI as a general, competitive baseline for multimodal behavioral analysis tasks, particularly in a low-resource setting

    Joyful: Joint Modality Fusion and Graph Contrastive Learning for Multimodal Emotion Recognition

    Full text link
    Multimodal emotion recognition aims to recognize emotions for each utterance of multiple modalities, which has received increasing attention for its application in human-machine interaction. Current graph-based methods fail to simultaneously depict global contextual features and local diverse uni-modal features in a dialogue. Furthermore, with the number of graph layers increasing, they easily fall into over-smoothing. In this paper, we propose a method for joint modality fusion and graph contrastive learning for multimodal emotion recognition (Joyful), where multimodality fusion, contrastive learning, and emotion recognition are jointly optimized. Specifically, we first design a new multimodal fusion mechanism that can provide deep interaction and fusion between the global contextual and uni-modal specific features. Then, we introduce a graph contrastive learning framework with inter-view and intra-view contrastive losses to learn more distinguishable representations for samples with different sentiments. Extensive experiments on three benchmark datasets indicate that Joyful achieved state-of-the-art (SOTA) performance compared to all baselines

    NetGPT: A Native-AI Network Architecture Beyond Provisioning Personalized Generative Services

    Full text link
    Large language models (LLMs) have triggered tremendous success to empower daily life by generative information, and the personalization of LLMs could further contribute to their applications due to better alignment with human intents. Towards personalized generative services, a collaborative cloud-edge methodology sounds promising, as it facilitates the effective orchestration of heterogeneous distributed communication and computing resources. In this article, after discussing the pros and cons of several candidate cloud-edge collaboration techniques, we put forward NetGPT to capably deploy appropriate LLMs at the edge and the cloud in accordance with their computing capacity. In addition, edge LLMs could efficiently leverage location-based information for personalized prompt completion, thus benefiting the interaction with cloud LLMs. After deploying representative open-source LLMs (e.g., GPT-2-base and LLaMA model) at the edge and the cloud, we present the feasibility of NetGPT on the basis of low-rank adaptation-based light-weight fine-tuning. Subsequently, we highlight substantial essential changes required for a native artificial intelligence (AI) network architecture towards NetGPT, with special emphasis on deeper integration of communications and computing resources and careful calibration of logical AI workflow. Furthermore, we demonstrate several by-product benefits of NetGPT, given edge LLM's astonishing capability to predict trends and infer intents, which possibly leads to a unified solution for intelligent network management \& orchestration. In a nutshell, we argue that NetGPT is a promising native-AI network architecture beyond provisioning personalized generative services

    Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow Forecasting

    Full text link
    Traffic flow forecasting on graphs has real-world applications in many fields, such as transportation system and computer networks. Traffic forecasting can be highly challenging due to complex spatial-temporal correlations and non-linear traffic patterns. Existing works mostly model such spatial-temporal dependencies by considering spatial correlations and temporal correlations separately and fail to model the direct spatial-temporal correlations. Inspired by the recent success of transformers in the graph domain, in this paper, we propose to directly model the cross-spatial-temporal correlations on the spatial-temporal graph using local multi-head self-attentions. To reduce the time complexity, we set the attention receptive field to the spatially neighboring nodes, and we also introduce an adaptive graph to capture the hidden spatial-temporal dependencies. Based on these attention mechanisms, we propose a novel Adaptive Graph Spatial-Temporal Transformer Network (ASTTN), which stacks multiple spatial-temporal attention layers to apply self-attention on the input graph, followed by linear layers for predictions. Experimental results on public traffic network datasets, METR-LA PEMS-BAY, PeMSD4, and PeMSD7, demonstrate the superior performance of our model
    corecore