29 research outputs found

    Breaking Temporal Consistency: Generating Video Universal Adversarial Perturbations Using Image Models

    Full text link
    As video analysis using deep learning models becomes more widespread, the vulnerability of such models to adversarial attacks is becoming a pressing concern. In particular, Universal Adversarial Perturbation (UAP) poses a significant threat, as a single perturbation can mislead deep learning models on entire datasets. We propose a novel video UAP using image data and image model. This enables us to take advantage of the rich image data and image model-based studies available for video applications. However, there is a challenge that image models are limited in their ability to analyze the temporal aspects of videos, which is crucial for a successful video attack. To address this challenge, we introduce the Breaking Temporal Consistency (BTC) method, which is the first attempt to incorporate temporal information into video attacks using image models. We aim to generate adversarial videos that have opposite patterns to the original. Specifically, BTC-UAP minimizes the feature similarity between neighboring frames in videos. Our approach is simple but effective at attacking unseen video models. Additionally, it is applicable to videos of varying lengths and invariant to temporal shifts. Our approach surpasses existing methods in terms of effectiveness on various datasets, including ImageNet, UCF-101, and Kinetics-400.Comment: ICCV 202

    TubeR: Tubelet Transformer for Video Action Detection

    Full text link
    We propose TubeR: a simple solution for spatio-temporal video action detection. Different from existing methods that depend on either an off-line actor detector or hand-designed actor-positional hypotheses like proposals or anchors, we propose to directly detect an action tubelet in a video by simultaneously performing action localization and recognition from a single representation. TubeR learns a set of tubelet-queries and utilizes a tubelet-attention module to model the dynamic spatio-temporal nature of a video clip, which effectively reinforces the model capacity compared to using actor-positional hypotheses in the spatio-temporal space. For videos containing transitional states or scene changes, we propose a context aware classification head to utilize short-term and long-term context to strengthen action classification, and an action switch regression head for detecting the precise temporal action extent. TubeR directly produces action tubelets with variable lengths and even maintains good results for long video clips. TubeR outperforms the previous state-of-the-art on commonly used action detection datasets AVA, UCF101-24 and JHMDB51-21
    corecore