1,519,372 research outputs found

    Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet

    Full text link
    Video sequences contain rich dynamic patterns, such as dynamic texture patterns that exhibit stationarity in the temporal domain, and action patterns that are non-stationary in either spatial or temporal domain. We show that a spatial-temporal generative ConvNet can be used to model and synthesize dynamic patterns. The model defines a probability distribution on the video sequence, and the log probability is defined by a spatial-temporal ConvNet that consists of multiple layers of spatial-temporal filters to capture spatial-temporal patterns of different scales. The model can be learned from the training video sequences by an "analysis by synthesis" learning algorithm that iterates the following two steps. Step 1 synthesizes video sequences from the currently learned model. Step 2 then updates the model parameters based on the difference between the synthesized video sequences and the observed training sequences. We show that the learning algorithm can synthesize realistic dynamic patterns

    Exploring Temporal Networks with Greedy Walks

    Full text link
    Temporal networks come with a wide variety of heterogeneities, from burstiness of event sequences to correlations between timings of node and link activations. In this paper, we set to explore the latter by using greedy walks as probes of temporal network structure. Given a temporal network (a sequence of contacts), greedy walks proceed from node to node by always following the first available contact. Because of this, their structure is particularly sensitive to temporal-topological patterns involving repeated contacts between sets of nodes. This becomes evident in their small coverage per step as compared to a temporal reference model -- in empirical temporal networks, greedy walks often get stuck within small sets of nodes because of correlated contact patterns. While this may also happen in static networks that have pronounced community structure, the use of the temporal reference model takes the underlying static network structure out of the equation and indicates that there is a purely temporal reason for the observations. Further analysis of the structure of greedy walks indicates that burst trains, sequences of repeated contacts between node pairs, are the dominant factor. However, there are larger patterns too, as shown with non-backtracking greedy walks. We proceed further to study the entropy rates of greedy walks, and show that the sequences of visited nodes are more structured and predictable in original data as compared to temporally uncorrelated references. Taken together, these results indicate a richness of correlated temporal-topological patterns in temporal networks

    Spatio-temporal Patterns of Indian Monsoon Rainfall

    Full text link
    The primary objective of this paper is to analyze a set of canonical spatial patterns that approximate the daily rainfall across the Indian region, as identified in the companion paper where we developed a discrete representation of the Indian summer monsoon rainfall using state variables with spatio-temporal coherence maintained using a Markov Random Field prior. In particular, we use these spatio-temporal patterns to study the variation of rainfall during the monsoon season. Firstly, the ten patterns are divided into three families of patterns distinguished by their total rainfall amount and geographic spread. These families are then used to establish `active' and `break' spells of the Indian monsoon at the all-India level. Subsequently, we characterize the behavior of these patterns in time by estimating probabilities of transition from one pattern to another across days in a season. Patterns tend to be `sticky': the self-transition is the most common. We also identify most commonly occurring sequences of patterns. This leads to a simple seasonal evolution model for the summer monsoon rainfall. The discrete representation introduced in the companion paper also identifies typical temporal rainfall patterns for individual locations. This enables us to determine wet and dry spells at local and regional scales. Lastly, we specify sets of locations that tend to have such spells simultaneously, and thus come up with a new regionalization of the landmass

    Explore the Functional Connectivity between Brain Regions during a Chemistry Working Memory Task.

    Get PDF
    Previous studies have rarely examined how temporal dynamic patterns, event-related coherence, and phase-locking are related to each other. This study assessed reaction-time-sorted spectral perturbation and event-related spectral perturbation in order to examine the temporal dynamic patterns in the frontal midline (F), central parietal (CP), and occipital (O) regions during a chemistry working memory task at theta, alpha, and beta frequencies. Furthermore, the functional connectivity between F-CP, CP-O, and F-O were assessed by component event-related coherence (ERCoh) and component phase-locking (PL) at different frequency bands. In addition, this study examined whether the temporal dynamic patterns are consistent with the functional connectivity patterns across different frequencies and time courses. Component ERCoh/PL measured the interactions between different independent components decomposed from the scalp EEG, mixtures of time courses of activities arising from different brain, and artifactual sources. The results indicate that the O and CP regions' temporal dynamic patterns are similar to each other. Furthermore, pronounced component ERCoh/PL patterns were found to exist between the O and CP regions across each stimulus and probe presentation, in both theta and alpha frequencies. The consistent theta component ERCoh/PL between the F and O regions was found at the first stimulus and after probe presentation. These findings demonstrate that temporal dynamic patterns at different regions are in accordance with the functional connectivity patterns. Such coordinated and robust EEG temporal dynamics and component ERCoh/PL patterns suggest that these brain regions' neurons work together both to induce similar event-related spectral perturbation and to synchronize or desynchronize simultaneously in order to swiftly accomplish a particular goal. The possible mechanisms for such distinct component phase-locking and coherence patterns were also further discussed

    Spatiotemporal correlations of handset-based service usages

    Get PDF
    We study spatiotemporal correlations and temporal diversities of handset-based service usages by analyzing a dataset that includes detailed information about locations and service usages of 124 users over 16 months. By constructing the spatiotemporal trajectories of the users we detect several meaningful places or contexts for each one of them and show how the context affects the service usage patterns. We find that temporal patterns of service usages are bound to the typical weekly cycles of humans, yet they show maximal activities at different times. We first discuss their temporal correlations and then investigate the time-ordering behavior of communication services like calls being followed by the non-communication services like applications. We also find that the behavioral overlap network based on the clustering of temporal patterns is comparable to the communication network of users. Our approach provides a useful framework for handset-based data analysis and helps us to understand the complexities of information and communications technology enabled human behavior.Comment: 11 pages, 15 figure
    corecore