1,519,372 research outputs found
Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet
Video sequences contain rich dynamic patterns, such as dynamic texture
patterns that exhibit stationarity in the temporal domain, and action patterns
that are non-stationary in either spatial or temporal domain. We show that a
spatial-temporal generative ConvNet can be used to model and synthesize dynamic
patterns. The model defines a probability distribution on the video sequence,
and the log probability is defined by a spatial-temporal ConvNet that consists
of multiple layers of spatial-temporal filters to capture spatial-temporal
patterns of different scales. The model can be learned from the training video
sequences by an "analysis by synthesis" learning algorithm that iterates the
following two steps. Step 1 synthesizes video sequences from the currently
learned model. Step 2 then updates the model parameters based on the difference
between the synthesized video sequences and the observed training sequences. We
show that the learning algorithm can synthesize realistic dynamic patterns
Exploring Temporal Networks with Greedy Walks
Temporal networks come with a wide variety of heterogeneities, from
burstiness of event sequences to correlations between timings of node and link
activations. In this paper, we set to explore the latter by using greedy walks
as probes of temporal network structure. Given a temporal network (a sequence
of contacts), greedy walks proceed from node to node by always following the
first available contact. Because of this, their structure is particularly
sensitive to temporal-topological patterns involving repeated contacts between
sets of nodes. This becomes evident in their small coverage per step as
compared to a temporal reference model -- in empirical temporal networks,
greedy walks often get stuck within small sets of nodes because of correlated
contact patterns. While this may also happen in static networks that have
pronounced community structure, the use of the temporal reference model takes
the underlying static network structure out of the equation and indicates that
there is a purely temporal reason for the observations. Further analysis of the
structure of greedy walks indicates that burst trains, sequences of repeated
contacts between node pairs, are the dominant factor. However, there are larger
patterns too, as shown with non-backtracking greedy walks. We proceed further
to study the entropy rates of greedy walks, and show that the sequences of
visited nodes are more structured and predictable in original data as compared
to temporally uncorrelated references. Taken together, these results indicate a
richness of correlated temporal-topological patterns in temporal networks
Spatio-temporal Patterns of Indian Monsoon Rainfall
The primary objective of this paper is to analyze a set of canonical spatial
patterns that approximate the daily rainfall across the Indian region, as
identified in the companion paper where we developed a discrete representation
of the Indian summer monsoon rainfall using state variables with
spatio-temporal coherence maintained using a Markov Random Field prior. In
particular, we use these spatio-temporal patterns to study the variation of
rainfall during the monsoon season. Firstly, the ten patterns are divided into
three families of patterns distinguished by their total rainfall amount and
geographic spread. These families are then used to establish `active' and
`break' spells of the Indian monsoon at the all-India level. Subsequently, we
characterize the behavior of these patterns in time by estimating probabilities
of transition from one pattern to another across days in a season. Patterns
tend to be `sticky': the self-transition is the most common. We also identify
most commonly occurring sequences of patterns. This leads to a simple seasonal
evolution model for the summer monsoon rainfall. The discrete representation
introduced in the companion paper also identifies typical temporal rainfall
patterns for individual locations. This enables us to determine wet and dry
spells at local and regional scales. Lastly, we specify sets of locations that
tend to have such spells simultaneously, and thus come up with a new
regionalization of the landmass
Explore the Functional Connectivity between Brain Regions during a Chemistry Working Memory Task.
Previous studies have rarely examined how temporal dynamic patterns, event-related coherence, and phase-locking are related to each other. This study assessed reaction-time-sorted spectral perturbation and event-related spectral perturbation in order to examine the temporal dynamic patterns in the frontal midline (F), central parietal (CP), and occipital (O) regions during a chemistry working memory task at theta, alpha, and beta frequencies. Furthermore, the functional connectivity between F-CP, CP-O, and F-O were assessed by component event-related coherence (ERCoh) and component phase-locking (PL) at different frequency bands. In addition, this study examined whether the temporal dynamic patterns are consistent with the functional connectivity patterns across different frequencies and time courses. Component ERCoh/PL measured the interactions between different independent components decomposed from the scalp EEG, mixtures of time courses of activities arising from different brain, and artifactual sources. The results indicate that the O and CP regions' temporal dynamic patterns are similar to each other. Furthermore, pronounced component ERCoh/PL patterns were found to exist between the O and CP regions across each stimulus and probe presentation, in both theta and alpha frequencies. The consistent theta component ERCoh/PL between the F and O regions was found at the first stimulus and after probe presentation. These findings demonstrate that temporal dynamic patterns at different regions are in accordance with the functional connectivity patterns. Such coordinated and robust EEG temporal dynamics and component ERCoh/PL patterns suggest that these brain regions' neurons work together both to induce similar event-related spectral perturbation and to synchronize or desynchronize simultaneously in order to swiftly accomplish a particular goal. The possible mechanisms for such distinct component phase-locking and coherence patterns were also further discussed
Spatiotemporal correlations of handset-based service usages
We study spatiotemporal correlations and temporal diversities of
handset-based service usages by analyzing a dataset that includes detailed
information about locations and service usages of 124 users over 16 months. By
constructing the spatiotemporal trajectories of the users we detect several
meaningful places or contexts for each one of them and show how the context
affects the service usage patterns. We find that temporal patterns of service
usages are bound to the typical weekly cycles of humans, yet they show maximal
activities at different times. We first discuss their temporal correlations and
then investigate the time-ordering behavior of communication services like
calls being followed by the non-communication services like applications. We
also find that the behavioral overlap network based on the clustering of
temporal patterns is comparable to the communication network of users. Our
approach provides a useful framework for handset-based data analysis and helps
us to understand the complexities of information and communications technology
enabled human behavior.Comment: 11 pages, 15 figure
- …
