440 research outputs found

    Who Will Retweet This? Automatically Identifying and Engaging Strangers on Twitter to Spread Information

    Full text link
    There has been much effort on studying how social media sites, such as Twitter, help propagate information in different situations, including spreading alerts and SOS messages in an emergency. However, existing work has not addressed how to actively identify and engage the right strangers at the right time on social media to help effectively propagate intended information within a desired time frame. To address this problem, we have developed two models: (i) a feature-based model that leverages peoples' exhibited social behavior, including the content of their tweets and social interactions, to characterize their willingness and readiness to propagate information on Twitter via the act of retweeting; and (ii) a wait-time model based on a user's previous retweeting wait times to predict her next retweeting time when asked. Based on these two models, we build a recommender system that predicts the likelihood of a stranger to retweet information when asked, within a specific time window, and recommends the top-N qualified strangers to engage with. Our experiments, including live studies in the real world, demonstrate the effectiveness of our work

    Hot Streaks on Social Media

    Full text link
    Measuring the impact and success of human performance is common in various disciplines, including art, science, and sports. Quantifying impact also plays a key role on social media, where impact is usually defined as the reach of a user's content as captured by metrics such as the number of views, likes, retweets, or shares. In this paper, we study entire careers of Twitter users to understand properties of impact. We show that user impact tends to have certain characteristics: First, impact is clustered in time, such that the most impactful tweets of a user appear close to each other. Second, users commonly have 'hot streaks' of impact, i.e., extended periods of high-impact tweets. Third, impact tends to gradually build up before, and fall off after, a user's most impactful tweet. We attempt to explain these characteristics using various properties measured on social media, including the user's network, content, activity, and experience, and find that changes in impact are associated with significant changes in these properties. Our findings open interesting avenues for future research on virality and influence on social media.Comment: Accepted as a full paper at ICWSM 2019. Please cite the ICWSM versio

    Emotion Dynamics of Public Opinions on Twitter

    Full text link
    [EN] Recently, social media has been considered the fastest medium for information broadcasting and sharing. Considering the wide range of applications such as viral marketing, political campaigns, social advertisement, and so on, influencing characteristics of users or tweets have attracted several researchers. It is observed from various studies that influential messages or users create a high impact on a social ecosystem. In this study, we assume that public opinion on a social issue on Twitter carries a certain degree of emotion, and there is an emotion flow underneath the Twitter network. In this article, we investigate social dynamics of emotion present in users' opinions and attempt to understand (i) changing characteristics of users' emotions toward a social issue over time, (ii) influence of public emotions on individuals' emotions, (iii) cause of changing opinion by social factors, and so on. We study users' emotion dynamics over a collection of 17.65M tweets with 69.36K users and observe 63% of the users are likely to change their emotional state against the topic into their subsequent tweets. Tweets were coming from the member community shows higher influencing capability than the other community sources. It is also observed that retweets influence users more than hashtags, mentions, and replies.The work described in this article was carried out in the OSiNT Lab (https://www.iitg.ac.in/cseweb/osint/), Indian Institute of Technology Guwahati, India. The creation of the dataset used in this study was partly supported by the Ministry of Information and Electronic Technology, Government of India.Naskar, D.; Singh, SR.; Kumar, D.; Nandi, S.; Onaindia De La Rivaherrera, E. (2020). Emotion Dynamics of Public Opinions on Twitter. ACM Transactions on Information Systems. 38(2):1-24. https://doi.org/10.1145/3379340124382Ahmed, S., Jaidka, K., & Cho, J. (2016). Tweeting India’s Nirbhaya protest: a study of emotional dynamics in an online social movement. Social Movement Studies, 16(4), 447-465. doi:10.1080/14742837.2016.1192457Andrieu, C., de Freitas, N., Doucet, A., & Jordan, M. I. (2003). Machine Learning, 50(1/2), 5-43. doi:10.1023/a:1020281327116Araujo, T., Neijens, P., & Vliegenthart, R. (2016). Getting the word out on Twitter: the role of influentials, information brokers and strong ties in building word-of-mouth for brands. International Journal of Advertising, 36(3), 496-513. doi:10.1080/02650487.2016.1173765Berger, J. (2011). Arousal Increases Social Transmission of Information. Psychological Science, 22(7), 891-893. doi:10.1177/0956797611413294Bi, B., Tian, Y., Sismanis, Y., Balmin, A., & Cho, J. (2014). Scalable topic-specific influence analysis on microblogs. Proceedings of the 7th ACM international conference on Web search and data mining. doi:10.1145/2556195.2556229Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. doi:10.1016/j.jocs.2010.12.007Chen, W., Wang, C., & Wang, Y. (2010). Scalable influence maximization for prevalent viral marketing in large-scale social networks. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’10. doi:10.1145/1835804.1835934Ding, Z., Jia, Y., Zhou, B., Zhang, J., Han, Y., & Yu, C. (2013). An Influence Strength Measurement via Time-Aware Probabilistic Generative Model for Microblogs. Lecture Notes in Computer Science, 372-383. doi:10.1007/978-3-642-37401-2_38Ding, Z., Wang, H., Guo, L., Qiao, F., Cao, J., & Shen, D. (2015). Finding Influential Users and Popular Contents on Twitter. Web Information Systems Engineering – WISE 2015, 267-275. doi:10.1007/978-3-319-26187-4_23Feldman Barrett, L., & Russell, J. A. (1998). Independence and bipolarity in the structure of current affect. Journal of Personality and Social Psychology, 74(4), 967-984. doi:10.1037/0022-3514.74.4.967Ferrara, E., & Yang, Z. (2015). Measuring Emotional Contagion in Social Media. PLOS ONE, 10(11), e0142390. doi:10.1371/journal.pone.0142390Hillmann, R., & Trier, M. (2012). Dissemination Patterns and Associated Network Effects of Sentiments in Social Networks. 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. doi:10.1109/asonam.2012.88Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? Proceedings of the 19th international conference on World wide web - WWW ’10. doi:10.1145/1772690.1772751Myers, S. A., Zhu, C., & Leskovec, J. (2012). Information diffusion and external influence in networks. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’12. doi:10.1145/2339530.2339540Nguyen, H. T., Ghosh, P., Mayo, M. L., & Dinh, T. N. (2017). Social Influence Spectrum at Scale. ACM Transactions on Information Systems, 36(2), 1-26. doi:10.1145/3086700Pal, A., & Counts, S. (2011). Identifying topical authorities in microblogs. Proceedings of the fourth ACM international conference on Web search and data mining - WSDM ’11. doi:10.1145/1935826.1935843Peng, S., Wang, G., & Xie, D. (2017). Social Influence Analysis in Social Networking Big Data: Opportunities and Challenges. IEEE Network, 31(1), 11-17. doi:10.1109/mnet.2016.1500104nmRussell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. doi:10.1037/h0077714Shi, J., Hu, P., Lai, K. K., & Chen, G. (2018). Determinants of users’ information dissemination behavior on social networking sites. Internet Research, 28(2), 393-418. doi:10.1108/intr-01-2017-0038Silva, A., Guimarães, S., Meira, W., & Zaki, M. (2013). ProfileRank. Proceedings of the 7th Workshop on Social Network Mining and Analysis - SNAKDD ’13. doi:10.1145/2501025.2501033Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and Information Diffusion in Social Media—Sentiment of Microblogs and Sharing Behavior. Journal of Management Information Systems, 29(4), 217-248. doi:10.2753/mis0742-1222290408Vardasbi, A., Faili, H., & Asadpour, M. (2017). SWIM. ACM Transactions on Information Systems, 36(1), 1-33. doi:10.1145/3072652Wang, Y., Li, Y., Fan, J., & Tan, K.-L. (2018). Location-aware Influence Maximization over Dynamic Social Streams. ACM Transactions on Information Systems, 36(4), 1-35. doi:10.1145/3230871Watts, D. J., & Dodds, P. S. (2007). Influentials, Networks, and Public Opinion Formation. Journal of Consumer Research, 34(4), 441-458. doi:10.1086/518527Weng, J., Lim, E.-P., Jiang, J., & He, Q. (2010). TwitterRank. Proceedings of the third ACM international conference on Web search and data mining - WSDM ’10. doi:10.1145/1718487.1718520Wolfsfeld, G., Segev, E., & Sheafer, T. (2013). Social Media and the Arab Spring. The International Journal of Press/Politics, 18(2), 115-137. doi:10.1177/1940161212471716Yik, M. S. M., Russell, J. A., & Barrett, L. F. (1999). Structure of self-reported current affect: Integration and beyond. Journal of Personality and Social Psychology, 77(3), 600-619. doi:10.1037/0022-3514.77.3.600Zhang, J., Zhang, R., Sun, J., Zhang, Y., & Zhang, C. (2016). TrueTop: A Sybil-Resilient System for User Influence Measurement on Twitter. IEEE/ACM Transactions on Networking, 24(5), 2834-2846. doi:10.1109/tnet.2015.2494059Zhang, Y., Moe, W. W., & Schweidel, D. A. (2017). Modeling the role of message content and influencers in social media rebroadcasting. International Journal of Research in Marketing, 34(1), 100-119. doi:10.1016/j.ijresmar.2016.07.003Ziegler, C.-N., & Lausen, G. (2005). Propagation Models for Trust and Distrust in Social Networks. Information Systems Frontiers, 7(4-5), 337-358. doi:10.1007/s10796-005-4807-

    RTbust: Exploiting Temporal Patterns for Botnet Detection on Twitter

    Full text link
    Within OSNs, many of our supposedly online friends may instead be fake accounts called social bots, part of large groups that purposely re-share targeted content. Here, we study retweeting behaviors on Twitter, with the ultimate goal of detecting retweeting social bots. We collect a dataset of 10M retweets. We design a novel visualization that we leverage to highlight benign and malicious patterns of retweeting activity. In this way, we uncover a 'normal' retweeting pattern that is peculiar of human-operated accounts, and 3 suspicious patterns related to bot activities. Then, we propose a bot detection technique that stems from the previous exploration of retweeting behaviors. Our technique, called Retweet-Buster (RTbust), leverages unsupervised feature extraction and clustering. An LSTM autoencoder converts the retweet time series into compact and informative latent feature vectors, which are then clustered with a hierarchical density-based algorithm. Accounts belonging to large clusters characterized by malicious retweeting patterns are labeled as bots. RTbust obtains excellent detection results, with F1 = 0.87, whereas competitors achieve F1 < 0.76. Finally, we apply RTbust to a large dataset of retweets, uncovering 2 previously unknown active botnets with hundreds of accounts

    What Scale of Audience a Campaign can Reach in What Price on Twitter?

    Get PDF
    Abstract—Campaigns with commercial and spam purposes have flooded the Twitter community. To understand what scale of audience a campaign could reach, we first perform a measurement study by collecting a dataset of about 10 million tweets via streaming API and one million search tweets for targeting topics, as well as 37,313 user accounts that are suspended by Twitter. From the dataset, we extract a spam campaign and a commercial promotion campaign accompanied by spamming activities. Then, we characterize the way in which a campaign can reach its audience, especially revealing the features that dominate the information diffusion. After identifying the accounts suspended by Twitter, we further inspect to what extent these features can help to weed out spam accounts. Also, the retrospective inspection is useful to uncover the tactics that malicious accounts utilize to avoid being suspended. Using the measurement results, we then develop a theoretical framework based on an epidemic model to investigate the dynamics of spammers and victims whom spammers reach in the spam campaign. With the theoretical framework, we conduct a benefit-cost analysis of the spam campaign, shedding lights on how to restrict the benefit of the spam campaign. I
    • …
    corecore