1,276 research outputs found

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    Capture, Learning, and Synthesis of 3D Speaking Styles

    Full text link
    Audio-driven 3D facial animation has been widely explored, but achieving realistic, human-like performance is still unsolved. This is due to the lack of available 3D datasets, models, and standard evaluation metrics. To address this, we introduce a unique 4D face dataset with about 29 minutes of 4D scans captured at 60 fps and synchronized audio from 12 speakers. We then train a neural network on our dataset that factors identity from facial motion. The learned model, VOCA (Voice Operated Character Animation) takes any speech signal as input - even speech in languages other than English - and realistically animates a wide range of adult faces. Conditioning on subject labels during training allows the model to learn a variety of realistic speaking styles. VOCA also provides animator controls to alter speaking style, identity-dependent facial shape, and pose (i.e. head, jaw, and eyeball rotations) during animation. To our knowledge, VOCA is the only realistic 3D facial animation model that is readily applicable to unseen subjects without retargeting. This makes VOCA suitable for tasks like in-game video, virtual reality avatars, or any scenario in which the speaker, speech, or language is not known in advance. We make the dataset and model available for research purposes at http://voca.is.tue.mpg.de.Comment: To appear in CVPR 201

    VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild

    Full text link
    We present VideoReTalking, a new system to edit the faces of a real-world talking head video according to input audio, producing a high-quality and lip-syncing output video even with a different emotion. Our system disentangles this objective into three sequential tasks: (1) face video generation with a canonical expression; (2) audio-driven lip-sync; and (3) face enhancement for improving photo-realism. Given a talking-head video, we first modify the expression of each frame according to the same expression template using the expression editing network, resulting in a video with the canonical expression. This video, together with the given audio, is then fed into the lip-sync network to generate a lip-syncing video. Finally, we improve the photo-realism of the synthesized faces through an identity-aware face enhancement network and post-processing. We use learning-based approaches for all three steps and all our modules can be tackled in a sequential pipeline without any user intervention. Furthermore, our system is a generic approach that does not need to be retrained to a specific person. Evaluations on two widely-used datasets and in-the-wild examples demonstrate the superiority of our framework over other state-of-the-art methods in terms of lip-sync accuracy and visual quality.Comment: Accepted by SIGGRAPH Asia 2022 Conference Proceedings. Project page: https://vinthony.github.io/video-retalking

    Head motion synthesis: evaluation and a template motion approach

    Get PDF
    The use of conversational agents has increased across the world. From providing automated support for companies to being virtual psychologists they have moved from an academic curiosity to an application with real world relevance. While many researchers have focused on the content of the dialogue and synthetic speech to give the agents a voice, more recently animating these characters has become a topic of interest. An additional use for character animation technology is in the film and video game industry where having characters animated without needing to pay for expensive labour would save tremendous costs. When animating characters there are many aspects to consider, for example the way they walk. However, to truly assist with communication automated animation needs to duplicate the body language used when speaking. In particular conversational agents are often only an animation of the upper parts of the body, so head motion is one of the keys to a believable agent. While certain linguistic features are obvious, such as nodding to indicate agreement, research has shown that head motion also aids understanding of speech. Additionally head motion often contains emotional cues, prosodic information, and other paralinguistic information. In this thesis we will present our research into synthesising head motion using only recorded speech as input. During this research we collected a large dataset of head motion synchronised with speech, examined evaluation methodology, and developed a synthesis system. Our dataset is one of the larger ones available. From it we present some statistics about head motion in general. Including differences between read speech and story telling speech, and differences between speakers. From this we are able to draw some conclusions as to what type of source data will be the most interesting in head motion research, and if speaker-dependent models are needed for synthesis. In our examination of head motion evaluation methodology we introduce Forced Canonical Correlation Analysis (FCCA). FCCA shows the difference between head motion shaped noise and motion capture better than standard methods for objective evaluation used in the literature. We have shown that for subjective testing it is best practice to use a variation of MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) based testing, adapted for head motion. Through experimentation we have developed guidelines for the implementation of the test, and the constraints on the length. Finally we present a new system for head motion synthesis. We make use of simple templates of motion, automatically extracted from source data, that are warped to suit the speech features. Our system uses clustering to pick the small motion units, and a combined HMM and GMM based approach for determining the values of warping parameters at synthesis time. This results in highly natural looking motion that outperforms other state of the art systems. Our system requires minimal human intervention and produces believable motion. The key innovates were the new methods for segmenting head motion and creating a process similar to language modelling for synthesising head motion

    3D Human Face Reconstruction and 2D Appearance Synthesis

    Get PDF
    3D human face reconstruction has been an extensive research for decades due to its wide applications, such as animation, recognition and 3D-driven appearance synthesis. Although commodity depth sensors are widely available in recent years, image based face reconstruction are significantly valuable as images are much easier to access and store. In this dissertation, we first propose three image-based face reconstruction approaches according to different assumption of inputs. In the first approach, face geometry is extracted from multiple key frames of a video sequence with different head poses. The camera should be calibrated under this assumption. As the first approach is limited to videos, we propose the second approach then focus on single image. This approach also improves the geometry by adding fine grains using shading cue. We proposed a novel albedo estimation and linear optimization algorithm in this approach. In the third approach, we further loose the constraint of the input image to arbitrary in the wild images. Our proposed approach can robustly reconstruct high quality model even with extreme expressions and large poses. We then explore the applicability of our face reconstructions on four interesting applications: video face beautification, generating personalized facial blendshape from image sequences, face video stylizing and video face replacement. We demonstrate great potentials of our reconstruction approaches on these real-world applications. In particular, with the recent surge of interests in VR/AR, it is increasingly common to see people wearing head-mounted displays. However, the large occlusion on face is a big obstacle for people to communicate in a face-to-face manner. Our another application is that we explore hardware/software solutions for synthesizing the face image with presence of HMDs. We design two setups (experimental and mobile) which integrate two near IR cameras and one color camera to solve this problem. With our algorithm and prototype, we can achieve photo-realistic results. We further propose a deep neutral network to solve the HMD removal problem considering it as a face inpainting problem. This approach doesn\u27t need special hardware and run in real-time with satisfying results

    Final Report to NSF of the Standards for Facial Animation Workshop

    Get PDF
    The human face is an important and complex communication channel. It is a very familiar and sensitive object of human perception. The facial animation field has increased greatly in the past few years as fast computer graphics workstations have made the modeling and real-time animation of hundreds of thousands of polygons affordable and almost commonplace. Many applications have been developed such as teleconferencing, surgery, information assistance systems, games, and entertainment. To solve these different problems, different approaches for both animation control and modeling have been developed
    corecore