27,390 research outputs found

    Sketching-out virtual humans: A smart interface for human modelling and animation

    Get PDF
    In this paper, we present a fast and intuitive interface for sketching out 3D virtual humans and animation. The user draws stick figure key frames first and chooses one for “fleshing-out” with freehand body contours. The system automatically constructs a plausible 3D skin surface from the rendered figure, and maps it onto the posed stick figures to produce the 3D character animation. A “creative model-based method” is developed, which performs a human perception process to generate 3D human bodies of various body sizes, shapes and fat distributions. In this approach, an anatomical 3D generic model has been created with three distinct layers: skeleton, fat tissue, and skin. It can be transformed sequentially through rigid morphing, fatness morphing, and surface fitting to match the original 2D sketch. An auto-beautification function is also offered to regularise the 3D asymmetrical bodies from users’ imperfect figure sketches. Our current system delivers character animation in various forms, including articulated figure animation, 3D mesh model animation, 2D contour figure animation, and even 2D NPR animation with personalised drawing styles. The system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes

    UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition

    Full text link
    Recently proposed robust 3D face alignment methods establish either dense or sparse correspondence between a 3D face model and a 2D facial image. The use of these methods presents new challenges as well as opportunities for facial texture analysis. In particular, by sampling the image using the fitted model, a facial UV can be created. Unfortunately, due to self-occlusion, such a UV map is always incomplete. In this paper, we propose a framework for training Deep Convolutional Neural Network (DCNN) to complete the facial UV map extracted from in-the-wild images. To this end, we first gather complete UV maps by fitting a 3D Morphable Model (3DMM) to various multiview image and video datasets, as well as leveraging on a new 3D dataset with over 3,000 identities. Second, we devise a meticulously designed architecture that combines local and global adversarial DCNNs to learn an identity-preserving facial UV completion model. We demonstrate that by attaching the completed UV to the fitted mesh and generating instances of arbitrary poses, we can increase pose variations for training deep face recognition/verification models, and minimise pose discrepancy during testing, which lead to better performance. Experiments on both controlled and in-the-wild UV datasets prove the effectiveness of our adversarial UV completion model. We achieve state-of-the-art verification accuracy, 94.05%94.05\%, under the CFP frontal-profile protocol only by combining pose augmentation during training and pose discrepancy reduction during testing. We will release the first in-the-wild UV dataset (we refer as WildUV) that comprises of complete facial UV maps from 1,892 identities for research purposes

    Finite Element Based Tracking of Deforming Surfaces

    Full text link
    We present an approach to robustly track the geometry of an object that deforms over time from a set of input point clouds captured from a single viewpoint. The deformations we consider are caused by applying forces to known locations on the object's surface. Our method combines the use of prior information on the geometry of the object modeled by a smooth template and the use of a linear finite element method to predict the deformation. This allows the accurate reconstruction of both the observed and the unobserved sides of the object. We present tracking results for noisy low-quality point clouds acquired by either a stereo camera or a depth camera, and simulations with point clouds corrupted by different error terms. We show that our method is also applicable to large non-linear deformations.Comment: additional experiment
    • 

    corecore