279,205 research outputs found

    Temperature dependent correlations in covalent insulators

    Full text link
    Motivated by the peculiar behavior of FeSi and FeSb2 we study the effect of local electronic correlations on magnetic, transport and optical properties in a specific type of band insulator, namely a covalent insulator. Investigating a minimum model of covalent insulator within a single-site dynamical mean-field approximation we are able to obtain the crossover from low temperature non-magnetic insulator to high-temperature paramagnetic metal with parameters realistic for FeSi and FeSb2 systems. Our results show that the behavior of FeSi does not imply microscopic description in terms of Kondo insulator (periodic Anderson model) as can be often found in the literature, but in fact reflects generic properties of a broader class of materials.Comment: 4 pages, 4 figure

    Temperature-dependent bandstructure of bulk EuO

    Full text link
    We present calculations for the temperature-dependent electronic structure of bulk ferromagnetic EuO based on a parametrization of the d-f model Hamiltonian using results of first-principles TB-LMTO band structure calculations. The presented method avoids the problem of double-counting of relevant interactions and takes into account the symmetry of the atomic orbitals. It enables us to determine the temperature-dependent band structure of EuO over the entire temperature range.Comment: 14 pages, 4 eps figures, Solid State Commun. (in press

    Temperature-dependent magnetization in diluted magnetic semiconductors

    Full text link
    We calculate magnetization in magnetically doped semiconductors assuming a local exchange model of carrier-mediated ferromagnetic mechanism and using a number of complementary theoretical approaches. In general, we find that the results of our mean-field calculations, particularly the dynamical mean field theory results, give excellent qualitative agreement with the experimentally observed magnetization in systems with itinerant charge carriers, such as Ga_{1-x}Mn_xAs with 0.03 < x < 0.07, whereas our percolation-theory-based calculations agree well with the existing data in strongly insulating materials, such as Ge_{1-x}Mn_x. We comment on the issue of non-mean-field like magnetization curves and on the observed incomplete saturation magnetization values in diluted magnetic semiconductors from our theoretical perspective. In agreement with experimental observations, we find the carrier density to be the crucial parameter determining the magnetization behavior. Our calculated dependence of magnetization on external magnetic field is also in excellent agreement with the existing experimental data.Comment: 17 pages, 15 figure

    Temperature dependent surface relaxations of Ag(111)

    Full text link
    The temperature dependent surface relaxation of Ag(111) is calculated by density-functional theory. At a given temperature, the equilibrium geometry is determined by minimizing the Helmholtz free energy within the quasiharmonic approximation. To this end, phonon dispersions all over the Brillouin zone are determined from density-functional perturbation theory. We find that the top-layer relaxation of Ag(111) changes from an inward contraction (-0.8 %) to an outward expansion (+6.3%) as the temperature increases from T=0 K to 1150 K, in agreement with experimental findings. Also the calculated surface phonon dispersion curves at room temperature are in good agreement with helium scattering measurements. The mechanism driving this surface expansion is analyzed.Comment: 6 pages, 7 figures, submitted to Phys. Rev. B (May 1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    The Temperature-Dependent Nature of Coronal Dimmings

    Full text link
    The opening-up of the magnetic field during solar eruptive events is often accompanied by a dimming of the local coronal emission. From observations of filament eruptions recorded with the Extreme-Ultraviolet Imager on STEREO during 2008-2009, it is evident that these dimmings are much more pronounced in 19.5 nm than in the lower-temperature line 17.1 nm, as viewed either on the disk or above the limb. We conclude that most of the cooler coronal plasma is not ejected but remains gravitationally bound when the loops open up. This result is consistent with Doppler measurements by Imada and coworkers, who found that the upflow speeds in a transient coronal hole increased dramatically above a temperature of 1 MK; it is also consistent with the quasistatic behavior of polar plumes, as compared with the hotter interplume regions that are the main source of the fast solar wind. When the open flux reconnects and closes down again, the trapped plasma is initially heated to such high temperatures that it is no longer visible at Fe IX 17.1 nm. Correspondingly, 17.1 nm images show a dark ribbon or ``heat wave'' propagating away from the polarity inversion line and coinciding with the brightened Fe XV 28.4 nm and Fe XII 19.5 nm post-eruptive loops and their footpoint areas. Such dark ribbons provide a clear example of dimmings that are not caused by a density depletion. The propagation of the ``heat wave'' is driven by the closing-down, not the opening-up, of flux and can be observed both off-limb and on-disk.Comment: 5 figures, movies are available online on the ApJL websit

    Temperature-Dependent Polarized Raman Spectra of CaFe2O4

    Full text link
    The Raman spectra of CaFe2O4 were measured with several exact scattering configurations between 20 and 520K and the symmetry of all observed Raman lines was determined. The Ag and B2g lines were assigned to definite phonon modes by comparison to the results of lattice dynamical calculations. No anomaly of phonon parameters was observed near the magnetic ordering temperature TN = 160K.Comment: 4 pages, 1 table, 4 figure
    corecore