683 research outputs found

    Zeolite crystal layers coupled to piezoelectric sensors

    Get PDF
    Microporous zeolite crystals were successfully coupled onto the gold electrodes of quartz crystal microbalances (QCM). A self-assembled monolayer of thiol-alkoxysilane coupling agent on the gold surface was used as the interfacial layer to promote adhesion of the zeolite crystals to the QCM. The resulting, densely packed single layers of zeolite crystals were stable to at least 625 K. Transient sorption behavior of organic vapor pulses, dynamic vapor sorption isotherms and nitrogen sorption isotherms at liquid nitrogen temperature were examined to characterize the zeolite-coated QCMs. Depending on the type of zeolite coating, the resonance frequency response to vapor pulses could be increased up to 500-fold compared to the bare QCM. The regular micropores (0.3-0.8 nm) of the QCM-attached zeolite crystals were found to control molecular access into the extensive intrazeolite volume. Selectivity of the frequency response in excess of 100:1 toward molecules of different size and/or shape could be demonstrated. An additional recognition mechanism based upon intrazeolite diffusion rates was also established

    Energy exchanges between atoms with a quartz crystal μ\mu-balance

    Full text link
    We propose an experimental method to fully characterize the energy exchange of particles during the physical vapor deposition process of thin surface layers. Our approach is based on the careful observation of perturbations of the oscillation frequency of a Quartz Crystal μ\mu-balance induced by the particles interaction. With this technique, it is possible to measure the momentum exchange of the atoms during the evaporation process and determine the ideal evaporation rate for an uniform energy distribution. We are able to follow the desorption dynamics of particles immediately after the first layers have been formed. These results are in close relation to the surface binding energy of the evaporated material, they offer a better control to obtain the desired properties of the thin surface layer. We applied our technique to investigate the physical vapor evaporation process for diverse elements, usually implemented in the development of film surface layers, such as Cu, W, Au, Gd and In, and confirm that our results are in agreement with measurements done previously with other techniques such as low-temperature photoluminescence

    GIADA performance during Rosetta mission scientific operations at comet 67P

    Get PDF
    The Grain Impact Analyser and Dust Accumulator (GIADA) instrument onboard Rosetta studied the dust environment of comet 67P/Churyumov–Gerasimenko from 3.7 au inbound, through perihelion, to 3.8 au outbound, measuring the dust flow and the dynamic properties of individual particles. GIADA is composed of three subsystems: 1) Grain Detection System (GDS); 2) Impact Sensor (IS); and 3) Micro-Balances System (MBS). Monitoring the subsystems’ performance during operations is an important element for the correct calibration of scientific measurements. In this paper, we analyse the GIADA inflight calibration data obtained by internal calibration devices for the three subsystems during the period from 1 August 2014 to 31 October 2015. The calibration data testify a nominal behaviour of the instrument during these fifteen months of mission; the only exception is a minor loss of sensitivity for one of the two GDS receivers, attributed to dust contamination

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    A quartz crystal biosensor for measurement in liquids

    Get PDF
    The detection of anti-human immunodeficiency virus (HIV) antibodies by means of synthetic HIV peptide immobilized on a piezoelectric quartz sensor is demonstrated. The measurement set-up consists of an oscillator circuit, a suitably modified AT-cut thickness-shear-mode quartz crystal with gold electrodes, which is housed in a special reaction vessel, and a computer-controlled frequency counter for the registration of the measured frequency values. The quartz crystal is adapted for a steady operation in liquids at a frequency of 20 MHz. In phosphate-buffered saline solution the oscillator reaches a stability of about 0.5 Hz within a few seconds, of about 2 Hz within 10 min and about 30 Hz within 1 h. The frequency shift due to the adsorption of various proteins to the uncoated sensor surface has been investigated. It can be shown that a stable adsorptive binding of proteins to an oscillating gold surface is feasible and can be used for the immobilization of a receptor layer (e.g. HIV peptide). Specific binding of the anti-HIV monoclonal antibody to the HIV peptide immobilized on the quartz sensor is demonstrated. Control experiments show, however, additional unspecific binding. According to the experiments, the Sauerbrey formula gives a sufficiently accurate value for the decrease of the resonant frequency due to adsorption or binding of macromolecular proteins on the quartz crystal surface

    IUS solid rocket motor contamination prediction methods

    Get PDF
    A series of computer codes were developed to predict solid rocket motor produced contamination to spacecraft sensitive surfaces. Subscale and flight test data have confirmed some of the analytical results. Application of the analysis tools to a typical spacecraft has provided early identification of potential spacecraft contamination problems and provided insight into their solution; e.g., flight plan modifications, plume or outgassing shields and/or contamination covers

    Environmental Measurements Session summaries

    Get PDF
    Emphasis was placed on data from payloads flown on the subject flights including results from the Induced Environment Contamination monitor (IECM). Brief summaries of the vibroacoustics, loads, electromagnetic and thermal aspects of the environment, as derived from Shuttle system measurements, were presented primarily to indicate where the environment was different than observed and, therefore, where specification changes may be forthcoming. In addition, brief summaries of two somewhat unexpected effects, the vehicle glow and interaction between the low Earth environment and Shuttle payload by materials were presented as an aid in interpreting other environmental data. Papers for each payload/experiment involved in Shuttle flights were presented essentially in flight related chronological order. A significant portion of time was allocated for presentation of IECM data since this payload was flown on STS-2, STS-3, and STS-4 and, therefore, represents the largest data base relative to the contamination environment. Summaries of papers are presented

    Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors

    Get PDF
    Acoustic wave resonator techniques are widely used in in-liquid biochemical applications. The main challenges remaining are the improvement of sensitivity and limit of detection, as well as multianalysis capabilities and reliability. The sensitivity improvement issue has been addressed by increasing the sensor frequency, using different techniques such as high fundamental frequency quartz crystal microbalances (QCMs), surface generated acoustic waves (SGAWs) and film bulk acoustic resonators (FBARs). However, this sensitivity improvement has not been completely matched in terms of limit of detection. The decrease on frequency stability due to the increase of the phase noise, particularly in oscillators, has made it impossible to increase the resolution. A new concept of sensor characterization at constant frequency has been recently proposed based on the phase/mass sensitivity equation: Δφ/Δm ≈ −1/mL, where mL is the liquid mass perturbed by the resonator. The validation of the new concept is presented in this article. An immunosensor application for the detection of a low molecular weight pollutant, the insecticide carbaryl, has been chosen as a validation model

    Some Sources of Contaminants in the Shuttle Bay Measured with Temperature-Controlled Quartz Crystal Microbalances (TQCM)

    Get PDF
    The sources of molecular deposits on a Temperature-Controlled Quartz Crystal Microbalance (TQCM) attached to the shuttle bay wall at some distance from the payload and pointing out of the bay have been investigated. Explored as possible sources are: (1) the outgassing of the shuttle tiles treated with the water proofing di-methyl-ethoxy-silane (DMES) compound, scattered back by the ambient molecules into the bay; (2) The ambient scattered return flux of the outgassing, from the RTV 560 silicone which is used as the adhesive for the tiles; (3) the ambient scattered return flux of the payload outgassing; (4) the return C, flux from outgassing source originating near, below, or adjacent to the package containing the TQCM; and (5) the self-scattering of venting plumes and outgassing above the monitor package depositing on the TQCM. In all of these sources, the magnitudes of the outgassing, of the leakage rates, and venting had to be estimated in the absence of data. The resulting analyses which can be useful for similar investigations, indicates that the outgassin- from the tiles, the RTV, the payloads, or the shuttle may not have been the sources of the deposit (about 1 micro g/cm(sup 2) during a the period from bay door opening and payload release from the bay). It appears more probable that the origin is the self- and/or ambient-scattered return fluxes originating near, below, or internal to the monitor package
    corecore