2,899,691 research outputs found

    Temperature Independent Renormalization of Finite Temperature Field Theory

    Get PDF
    We analyse 4-dimensional massive \vp^4 theory at finite temperature T in the imaginary-time formalism. We present a rigorous proof that this quantum field theory is renormalizable, to all orders of the loop expansion. Our main point is to show that the counterterms can be chosen temperature independent, so that the temperature flow of the relevant parameters as a function of TT can be followed. Our result confirms the experience from explicit calculations to the leading orders. The proof is based on flow equations, i.e. on the (perturbative) Wilson renormalization group. In fact we will show that the difference between the theories at T>0 and at T=0 contains no relevant terms. Contrary to BPHZ type formalisms our approach permits to lay hand on renormalization conditions and counterterms at the same time, since both appear as boundary terms of the renormalization group flow. This is crucial for the proof.Comment: 17 pages, typos and one footnote added, to appear in Ann.H.Poincar

    Medley in finite temperature field theory

    Full text link
    I discuss three subjects in thermal field theory: why in \sun gauge theories the \zn symmetry is broken at high (instead of low) temperature, the possible singularity structure of gauge variant propagators, and the problem of how to compute the viscosity from the Kubo formula.Comment: LaTeX file, 11 pages, BNL-P-2/92 (December, 1992

    Confined Maxwell Field and Temperature Inversion Symmetry

    Full text link
    We evaluate the Casimir vacuum energy at finite temperature associated with the Maxwell field confined by a perfectly conducting rectangular cavity and show that an extended version of the temperature inversion symmetry is present in this system

    Finite Temperature Simulations from Quantum Field Dynamics?

    Full text link
    We describe a Hartree ensemble method to approximately solve the Heisenberg equations for the \phi^4 model in 1+1 dimensions. We compute the energies and number densities of the quantum particles described by the \phi field and find that the particles initially thermalize with a Bose-Einstein distribution for the particle density. Gradually, however, the distribution changes towards classical equipartition. Using suitable initial conditions quantum thermalization is achieved much faster than the onset of this undesirable equipartition. We also show how the numerical efficiency of our method can be significantly improved.Comment: Lattice 2000 (Finite Temperature), 4 pages, 5 figures; title correcte

    Low temperature field-effect in crystalline organic material

    Full text link
    Molecular organic materials offer the promise of novel electronic devices but also present challenges for understanding charge transport in narrow band systems. Low temperature studies elucidate fundamental transport processes. We report the lowest temperature field effect transport results on a crystalline oligomeric organic material, rubrene. We find field effect switching with on-off ratio up to 10^7 at temperatures down to 10 K. Gated transport shows a factor of ~10 suppression of the thermal activation energy in 10-50 K range and nearly temperature independent resistivity below 10 K.Comment: 5 pages, 4 figure

    Wide-field Magnetic Field and Temperature Imaging using Nanoscale Quantum Sensors

    Full text link
    The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport, solid-state material dynamics, and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally-coated nanodiamonds to realize simultaneous wide-field MT imaging. Our "quantum conformally-attached thermo-magnetic" (Q-CAT) imaging enables (i) wide-field, high-frame-rate imaging (100 - 1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron-mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields
    corecore