13,875 research outputs found
Review
The chalcogen elements oxygen, sulfur, and selenium are essential constituents of side chain functions of natural amino acids. Conversely, no structural and biological function has been discovered so far for the heavier and more metallic tellurium element. In the methionine series, only the sulfur-containing methionine is a proteinogenic amino acid, while selenomethionine and telluromethionine are natural amino acids that are incorporated into proteins most probably because of the tolerance of the methionyl-tRNA synthetase; so far, methoxinine the oxygen analogue has not been discovered in natural compounds. Similarly, the chalcogen analogues of tryptophan and phenylalanine in which the benzene ring has been replaced by the largely isosteric thiophene, selenophene, and more recently, even tellurophene are fully synthetic mimics that are incorporated with more or less efficiency into proteins via the related tryptophanyl- and phenylalanyl-tRNA synthetases, respectively. In the serine/cysteine series, also selenocysteine is a proteinogenic amino acid that is inserted into proteins by a special translation mechanism, while the tellurocysteine is again most probably incorporated into proteins by the tolerance of the cysteinyl-tRNA synthetase. For research purposes, all of these natural and synthetic chalcogen amino acids have been extensively applied in peptide and protein research to exploit their different physicochemical properties for modulating structural and functional properties in synthetic peptides and rDNA expressed proteins as discussed in the following review
Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1
Tellurite (TeO32-) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32- into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32-, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assembly and growth that resembled the chemical surfactant-assisted process for NRs synthesis. The TeNRs produced by the BCP1 strain showed an average length (>700 nm) almost doubled compared to those observed in other studies. Further, the biogenic TeNRs displayed a regular single-crystalline structure typically obtained for those chemically synthesized. The chemical-physical characterization of the biogenic TeNRs reflected their thermodynamic stability that is likely derived from amphiphilic biomolecules present in the organic layer surrounding the NRs. Finally, the biogenic TeNRs extract showed good electrical conductivity. Thus, these findings support the suitability of this strain as eco-friendly biocatalyst to produce high quality tellurium-based nanomaterials exploitable for technological purposes
Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles
Background: Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles-both inside and outside the cells-characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have attracted great interest due to their photoelectric and semiconducting properties. In addition, their exploitation as antimicrobial agents is currently becoming an area of intensive research in medical sciences. Results: In the present study, the bacterial strain Ochrobactrum sp. MPV1, isolated from a dump of roasted arsenopyrites as residues of a formerly sulfuric acid production near Scarlino (Tuscany, Italy) was analyzed for its capability of efficaciously bioreducing the chalcogen oxyanions selenite (SeO32-) and tellurite (TeO32-) to their respective elemental forms (Se0 and Te0) in aerobic conditions, with generation of Se- and Te-nanoparticles (Se- and TeNPs). The isolate could bioconvert 2 mM SeO32- and 0.5 mM TeO32- to the corresponding Se0 and Te0 in 48 and 120 h, respectively. The intracellular accumulation of nanomaterials was demonstrated through electron microscopy. Moreover, several analyses were performed to shed light on the mechanisms involved in SeO32- and TeO32- bioreduction to their elemental states. Results obtained suggested that these oxyanions are bioconverted through two different mechanisms in Ochrobactrum sp. MPV1. Glutathione (GSH) seemed to play a key role in SeO32- bioreduction, while TeO32- bioconversion could be ascribed to the catalytic activity of intracellular NADH-dependent oxidoreductases. The organic coating surrounding biogenic Se- and TeNPs was also characterized through Fourier-transform infrared spectroscopy. This analysis revealed interesting differences among the NPs produced by Ochrobactrum sp. MPV1 and suggested a possible different role of phospholipids and proteins in both biosynthesis and stabilization of such chalcogen-NPs. Conclusions: In conclusion, Ochrobactrum sp. MPV1 has demonstrated to be an ideal candidate for the bioconversion of toxic oxyanions such as selenite and tellurite to their respective elemental forms, producing intracellular Se- and TeNPs possibly exploitable in biomedical and industrial applications.[Figure not available: see fulltext.
Recommended from our members
Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3
Aims: Tellurium-based devices, such as photovoltaic (PV) modules and thermoelectric generators, are expected to play an increasing role in renewable energy technologies. Tellurium, however, is one of the scarcest elements in the earth's crust, and current production and recycling methods are inefficient and use toxic chemicals. This study demonstrates an alternative, bacterially mediated tellurium recovery process.
Methods and Results: We show that the hydrothermal vent microbe Pseudoalteromonas sp. strain EPR3 can convert tellurium from a wide variety of compounds, industrial sources and devices into metallic tellurium and a gaseous tellurium species. These compounds include metallic tellurium (Te0), tellurite (TeO32−), copper autoclave slime, tellurium dioxide (TeO2), tellurium-based PV material (cadmium telluride, CdTe) and tellurium-based thermoelectric material (bismuth telluride, Bi2Te3). Experimentally, this was achieved by incubating these tellurium sources with the EPR3 in both solid and liquid media.
Conclusions: Despite the fact that many of these tellurium compounds are considered insoluble in aqueous solution, they can nonetheless be transformed by EPR3, suggesting the existence of a steady state soluble tellurium concentration during tellurium transformation.
Significance and Impact of the Study
These experiments provide insights into the processes of tellurium precipitation and volatilization by bacteria, and their implications on tellurium production and recycling.Engineering and Applied Science
Spin Glass and Semiconducting Behavior in 1D BaFe2-{\delta}Se3 Crystals
We investigate the physical properties and electronic structure of
BaFe2-{\delta}Se3 crystals, which were grown out of tellurium flux. The crystal
structure of the compound, an iron-deficient derivative of the ThCr2Si2-type,
is built upon edge-shared FeSe4 tetrahedra fused into double chains. The
semiconducting BaFe2-{\delta}Se3 with {\delta} \approx 0.2 ({\rho}295K = 0.18
{\Omega}\cdotcm and Eg = 0.30 eV) does not order magnetically, however there is
evidence for short-range magnetic correlations of spin glass type (Tf \approx
50 K) in magnetization, heat capacity and neutron diffraction results. A
one-third substitution of selenium with sulfur leads to a slightly higher
electrical conductivity ({\rho}295K = 0.11 {\Omega}\cdotcm and Eg = 0.22 eV)
and a lower spin glass freezing temperature (Tf \approx 15 K), corroborating
with higher electrical conductivity reported for BaFe2S3. According to the
electronic structure calculations, BaFe2Se3 can be considered as a
one-dimensional ladder structure with a weak interchain coupling.Comment: 17 pages, 9 figure
- …
