18 research outputs found

    Nested (inverse) binomial sums and new iterated integrals for massive Feynman diagrams

    Full text link
    Nested sums containing binomial coefficients occur in the computation of massive operator matrix elements. Their associated iterated integrals lead to alphabets including radicals, for which we determined a suitable basis. We discuss algorithms for converting between sum and integral representations, mainly relying on the Mellin transform. To aid the conversion we worked out dedicated rewrite rules, based on which also some general patterns emerging in the process can be obtained.Comment: 13 pages LATEX, one style file, Proceedings of Loops and Legs in Quantum Field Theory -- LL2014,27 April 2014 -- 02 May 2014 Weimar, German

    Computation of the unipotent radical of the differential Galois group for a parameterized second-order linear differential equation

    Full text link
    We propose a new method to compute the unipotent radical Ru(H)R_u(H) of the differential Galois group HH associated to a parameterized second-order homogeneous linear differential equation of the form 2x2YqY=0,\tfrac{\partial^2}{\partial x^2}Y-qY=0, where qF(x)q \in F(x) is a rational function in xx with coefficients in a Π\Pi-field FF of characteristic zero, and Π\Pi is a commuting set of parametric derivations. The procedure developed by Dreyfus reduces the computation of Ru(H)R_u(H) to solving a creative telescoping problem, whose effective solution requires the assumption that the maximal reductive quotient H/Ru(H)H / R_u(H) is a Π\Pi-constant linear differential algebraic group. When this condition is not satisfied, we compute a new set of parametric derivations Π\Pi' such that the associated differential Galois group HH' has the property that H/Ru(H)H'/ R_u(H') is Π\Pi'-constant, and such that Ru(H)R_u(H) is defined by the same differential equations as Ru(H)R_u(H'). Thus the computation of Ru(H)R_u(H) is reduced to the effective computation of Ru(H)R_u(H'). We expect that an elaboration of this method will be successful in extending the applicability of some recent algorithms developed by Minchenko, Ovchinnikov, and Singer to compute unipotent radicals for higher order equations.Comment: 12 page

    Reduction-Based Creative Telescoping for Algebraic Functions

    Full text link
    Continuing a series of articles in the past few years on creative telescoping using reductions, we develop a new algorithm to construct minimal telescopers for algebraic functions. This algorithm is based on Trager's Hermite reduction and on polynomial reduction, which was originally designed for hyperexponential functions and extended to the algebraic case in this paper

    On trivial words in finitely presented groups

    Full text link
    We propose a numerical method for studying the cogrowth of finitely presented groups. To validate our numerical results we compare them against the corresponding data from groups whose cogrowth series are known exactly. Further, we add to the set of such groups by finding the cogrowth series for Baumslag-Solitar groups BS(N,N)=\mathrm{BS}(N,N) = and prove that their cogrowth rates are algebraic numbers.Comment: This article has been rewritten as two separate papers, with improved exposition. The new papers are arXiv:1309.4184 and arXiv:1312.572

    Diagonals of rational functions, pullbacked 2F1 hypergeometric functions and modular forms (unabrigded version)

    Full text link
    We recall that diagonals of rational functions naturally occur in lattice statistical mechanics and enumerative combinatorics. We find that a seven-parameter rational function of three variables with a numerator equal to one (reciprocal of a polynomial of degree two at most) can be expressed as a pullbacked 2F1 hypergeometric function. This result can be seen as the simplest non-trivial family of diagonals of rational functions. We focus on some subcases such that the diagonals of the corresponding rational functions can be written as a pullbacked 2F1 hypergeometric function with two possible rational functions pullbacks algebraically related by modular equations, thus showing explicitely that the diagonal is a modular form. We then generalise this result to eight, nine and ten parameters families adding some selected cubic terms at the denominator of the rational function defining the diagonal. We finally show that each of these previous rational functions yields an infinite number of rational functions whose diagonals are also pullbacked 2F1 hypergeometric functions and modular forms.Comment: 39 page
    corecore