365,576 research outputs found
The Application of Integrated Knowledge-based Systems for the Biomedical Risk Assessment Intelligent Network (BRAIN)
One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through the Biomedical Risk Assessment Intelligent Network (BRAIN), an integrated network of both human and computer elements. The BRAIN will function as an advisor to flight surgeons by assessing the risk of in-flight biomedical problems and recommending appropriate countermeasures. This paper describes the joint effort among various NASA elements to develop BRAIN and an Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of the following: (1) knowledge acquisition; (2) integration of IDRA components; (3) use of expert systems to automate the biomedical prediction process; (4) development of a user-friendly interface; and (5) integration of the IDRA prototype and Exercise Countermeasures Intelligent System (ExerCISys). Because the C Language, CLIPS (the C Language Integrated Production System), and the X-Window System were portable and easily integrated, they were chosen as the tools for the initial IDRA prototype. The feasibility was tested by developing an IDRA prototype that predicts the individual risk of influenza. The application of knowledge-based systems to risk assessment is of great market value to the medical technology industry
Time to publication for NIHR HTA programme-funded research: a cohort study
ObjectiveTo assess the time to publication of primary research and evidence syntheses funded by the National Institute for Health Research (NIHR) Health Technology Assessment (HTA) Programme published as a monograph in Health Technology Assessment and as a journal article in the wider biomedical literature.Study designRetrospective cohort study.SettingPrimary research and evidence synthesis projects funded by the HTA Programme were included in the cohort if they were registered in the NIHR research programmes database and was planned to submit the draft final report for publication in Health Technology Assessment on or before 9 December 2011.Main outcome measuresThe median time to publication and publication at 30?months in Health Technology Assessment and in an external journal were determined by searching the NIHR research programmes database and HTA Programme website.ResultsOf 458 included projects, 184 (40.2%) were primary research projects and 274 (59.8%) were evidence syntheses. A total of 155 primary research projects had a completion date; the median time to publication was 23?months (26.5 and 35.5?months to publish a monograph and to publish in an external journal, respectively) and 69% were published within 30?months. The median time to publication of HTA-funded trials (n=126) was 24?months and 67.5% were published within 30?months. Among the evidence syntheses with a protocol online date (n=223), the median time to publication was 25.5?months (28?months to publication as a monograph), but only 44.4% of evidence synthesis projects were published in an external journal. 65% of evidence synthesis studies had been published within 30.0?months.ConclusionsResearch funded by the HTA Programme publishes promptly. The importance of Health Technology Assessment was highlighted as the median time to publication was 9?months shorter for a monograph than an external journal article
Strengthening and stretching for rheumatoid arthritis of the hand (SARAH). A randomised controlled trial and economic evaluation
Study registration: Current Controlled Trials ISRCTN 89936343.Background - The effectiveness of exercise for improving hand and wrist function in people with rheumatoid arthritis (RA) is uncertain. Objectives - The study aims were (1) to estimate the clinical effectiveness and cost-effectiveness of adding an optimised exercise programme for hands and upper limbs to standard care for patients with RA; and (2) to qualitatively describe the experience of participants in the trial with a particular emphasis on acceptability of the intervention, exercise behaviours and reasons for adherence/non-adherence.This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 19, No. 19. See the NIHR Journals Library website for further project information. This report has been developed in association with the NIHR Collaboration for Leadership in Applied Health Research and Care Oxford and the NIHR Biomedical Research Unit Funding Scheme. This project benefited from facilities funded through Birmingham Science City Translational Medicine Clinical Research and Infrastructure Trials Platform, with support from Advantage West Midlands
Advanced Refrigerator/Freezer Technology Development Project
The Advanced Refrigerator/Freezer (R/F) Technology Development Project was initiated in 1994, on the basis of recommendations of a team of NASA Scientists and engineers, who assessed the need for advanced technology to support future life and biomedical sciences space flight missions. The project, which was cofunded by NASA's Office of Aerospace Technology and Life and Biomedical Sciences & Applications Division, has two phases. In the Phase I Advanced R/F Technology Assessment, candidate technologies were identified and ranked, on the basis of a combination of their effect on system performance and their risk of developmental success. In Phase II Technology Development, the advanced technologies with the highest combined ranking, which could be accomplished within the budgetary constraints, were pursued. The effort has been mainly by contract, with a modest in-house effort at the NASA Lewis Research Center. Oceaneering Space Systems (OSS) of Houston, Texas, was selected as the prime contractor for both contract phases
Health Technology Assessment and Biomedical Engineering : global trends, gaps and opportunities
The diffusion of medical devices is expanding at an astonishing rate. The increasing number of novel patents per year suggests this growth will continue. In contrast to drugs, medical devices are intrinsically dependent on the environment in which they are used and how they are maintained. This created an unprecedented global need for well-trained biomedical engineers who can help healthcare systems to assess them. The International Federation for Medical and Biological Engineering (IFMBE) is the global scientific society of biomedical engineers in official relations with the United Nations World Health Organisation (WHO) and has been very active in promoting the role of the biomedical engineer in Health Technology Assessment (HTA). The IFMBE Health Technology Assessment Division (HTAD) is the IFMBE operative branch in this field, promoting studies, projects and activities to foster the growth of this specific and very important science sector, including summer schools, training material, an HTA eLearning platform, HTA guidelines, awards and more. This article describes the vision, the mission and the strategy of the HTAD, with a focus on the results achieved and the impact this is having on global policymaking
The teaching of social and ethical issues in the school curriculum arising from developments in biomedical research: a research study for teachers
Reengineering Biomedical Engineering Curricula: A New Product Development Approach
Product development engineers in medical industries have created design control procedures to ensure high quality designs that are as error-free as possible. The reason is simple; companies must adhere to certain engineering and manufacturing best practices in order to obtain certification of their devices for sale in the US and abroad. We describe here an ongoing effort to apply these industrial best practices to the design and implementation of a novel sequence of undergraduate biomedical computing courses within the Department of Bio-medical Engineering at Marquette University (Milwaukee, Wisconsin). We have tightly integrated our industrial advisory board into this design and development effort. The board has contributed to significantly to the orderly generation of curricular requirements, the development of course implementation designs and the evaluation of these designs per requirements
Ambulatory Assessment of Ankle and Foot Dynamics
Ground reaction force (GRF) measurement is important in the analysis of human body movements. The main drawback of the existing measurement systems is the restriction to a laboratory environment. This paper proposes an ambulatory system for assessing the dynamics of ankle and foot, which integrates the measurement of the GRF with the measurement of human body movement. The GRF and the center of pressure (CoP) are measured using two six-degrees-of-freedom force sensors mounted beneath the shoe. The movement of foot and lower leg is measured using three miniature inertial sensors, two rigidly attached to the shoe and one on the lower leg. The proposed system is validated using a force plate and an optical position measurement system as a reference. The results show good correspondence between both measurement systems, except for the ankle power estimation. The root mean square (RMS) difference of the magnitude of the GRF over 10 evaluated trials was (0.012 plusmn 0.001) N/N (mean plusmn standard deviation), being (1.1 plusmn 0.1)% of the maximal GRF magnitude. It should be noted that the forces, moments, and powers are normalized with respect to body weight. The CoP estimation using both methods shows good correspondence, as indicated by the RMS difference of (5.1 plusmn 0.7) mm, corresponding to (1.7 plusmn 0.3)% of the length of the shoe. The RMS difference between the magnitudes of the heel position estimates was calculated as (18 plusmn 6) mm, being (1.4 plusmn 0.5)% of the maximal magnitude. The ankle moment RMS difference was (0.004 plusmn 0.001) Nm/N, being (2.3 plusmn 0.5)% of the maximal magnitude. Finally, the RMS difference of the estimated power at the ankle was (0.02 plusmn 0.005) W/N, being (14 plusmn 5)% of the maximal power. This power difference is caused by an inaccurate estimation of the angular velocities using the optical reference measurement system, which is due to considering the foot as a single segment. The ambulatory system considers separat- - e heel and forefoot segments, thus allowing an additional foot moment and power to be estimated. Based on the results of this research, it is concluded that the combination of the instrumented shoe and inertial sensing is a promising tool for the assessment of the dynamics of foot and ankle in an ambulatory setting
- …
