21,749 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Information reuse in dynamic spectrum access

    Get PDF
    Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE

    Is re-farming the answer to the spectrum shortage conundrum?

    Get PDF
    Radio spectrum has become one of the engines of economic growth. However, rapid technological change, ever increasing demands for new wireless services and the nature of spectrum as a scarce resource necessitate an urgent re-examination of issues such as congestion and interference. This paper argues that the traditional administrative spectrum management approach is unlikely to overcome these issues, thereby resulting in growing technical and economic inefficiencies. As countries review their spectrum policies - a process that is generically referred to as radio spectrum policy reform - to counter these inefficiencies, modifications to the radio frequency allocations and assignments are beginning to be implemented by way of radio spectrum re-farming? This phenomenon forms the subject matter of this paper

    IT-Supported Management of Mass Casualty Incidents: The e-Triage Project

    Get PDF
    Emergencies arise out of disasters and are characterized by limited resources in terms of medical personnel and infrastructure, underlining the importance of mobilizing regional, supra-regional and/or international help to the affected regions. Effective deployment of this help is crucial, but only possible if a common operational picture among authorities, coordination centers, and staff working in the field is developed as quickly as possible. Since mass casualty incidents (MCIs) normally overwhelm the regularly available rescue resources (rescue personnel, transport vehicles, hospital capacity, etc.), a particularly effective crisis management has to be applied. In general, for co-ordination centers it is a challenge to get an immediate and accurate situation overview (i.e. number of victims, injury categories and their location). Indeed, triage and registration performed at different places by different teams maintaining different lists are indubitably an error-prone approach. Furthermore, it can happen that all later attempts to track the way of single patient, their attendants and transport vehicles are not very successful, although this could be of key interest in scenarios with nuclear, biological or chemical hazards. Within the e-Triage project, which is sponsored by the German Federal Ministry of Education and Research, an integrated concept for electronic registration of affected persons is under development

    IT-Supported Management of Mass Casualty Incidents: The e-Triage Project

    Get PDF
    Voice, analogue mobile radio, and paper have been successfully used for decades for coordination of emergencies and disasters, but although being simple and robust this approach cannot keep pace with today’s requirements any more. Emerging and established digital communication standards open the door to new applications and services, but the expected benefit needs to be carefully evaluated against robustness, interoperability, and user-friendliness. This paper describes a framework for IT-supported management of mass casualty incidents, which is currently under implementation and study. The four pillars of the concept are handheld devices for use both in daily rescue operations and in disasters, autonomous satellite-based communication infrastructure, a distributed database concept for maximal availability, and psychological acceptance research
    • 

    corecore