1,831 research outputs found

    A Lagrangian relaxation approach to the edge-weighted clique problem

    Get PDF
    The bb-clique polytope CPbnCP^n_b is the convex hull of the node and edge incidence vectors of all subcliques of size at most bb of a complete graph on nn nodes. Including the Boolean quadric polytope QPnQP^n as a special case and being closely related to the quadratic knapsack polytope, it has received considerable attention in the literature. In particular, the max-cut problem is equivalent with optimizing a linear function over QPnnQP^n_n. The problem of optimizing linear functions over CPbnCP^n_b has so far been approached via heuristic combinatorial algorithms and cutting-plane methods. We study the structure of CPbnCP^n_b in further detail and present a new computational approach to the linear optimization problem based on Lucena's suggestion of integrating cutting planes into a Lagrangian relaxation of an integer programming problem. In particular, we show that the separation problem for tree inequalities becomes polynomial in our Lagrangian framework. Finally, computational results are presented. \u

    Scheduling Monotone Moldable Jobs in Linear Time

    Full text link
    A moldable job is a job that can be executed on an arbitrary number of processors, and whose processing time depends on the number of processors allotted to it. A moldable job is monotone if its work doesn't decrease for an increasing number of allotted processors. We consider the problem of scheduling monotone moldable jobs to minimize the makespan. We argue that for certain compact input encodings a polynomial algorithm has a running time polynomial in n and log(m), where n is the number of jobs and m is the number of machines. We describe how monotony of jobs can be used to counteract the increased problem complexity that arises from compact encodings, and give tight bounds on the approximability of the problem with compact encoding: it is NP-hard to solve optimally, but admits a PTAS. The main focus of this work are efficient approximation algorithms. We describe different techniques to exploit the monotony of the jobs for better running times, and present a (3/2+{\epsilon})-approximate algorithm whose running time is polynomial in log(m) and 1/{\epsilon}, and only linear in the number n of jobs

    Collocation Games and Their Application to Distributed Resource Management

    Full text link
    We introduce Collocation Games as the basis of a general framework for modeling, analyzing, and facilitating the interactions between the various stakeholders in distributed systems in general, and in cloud computing environments in particular. Cloud computing enables fixed-capacity (processing, communication, and storage) resources to be offered by infrastructure providers as commodities for sale at a fixed cost in an open marketplace to independent, rational parties (players) interested in setting up their own applications over the Internet. Virtualization technologies enable the partitioning of such fixed-capacity resources so as to allow each player to dynamically acquire appropriate fractions of the resources for unencumbered use. In such a paradigm, the resource management problem reduces to that of partitioning the entire set of applications (players) into subsets, each of which is assigned to fixed-capacity cloud resources. If the infrastructure and the various applications are under a single administrative domain, this partitioning reduces to an optimization problem whose objective is to minimize the overall deployment cost. In a marketplace, in which the infrastructure provider is interested in maximizing its own profit, and in which each player is interested in minimizing its own cost, it should be evident that a global optimization is precisely the wrong framework. Rather, in this paper we use a game-theoretic framework in which the assignment of players to fixed-capacity resources is the outcome of a strategic "Collocation Game". Although we show that determining the existence of an equilibrium for collocation games in general is NP-hard, we present a number of simplified, practically-motivated variants of the collocation game for which we establish convergence to a Nash Equilibrium, and for which we derive convergence and price of anarchy bounds. In addition to these analytical results, we present an experimental evaluation of implementations of some of these variants for cloud infrastructures consisting of a collection of multidimensional resources of homogeneous or heterogeneous capacities. Experimental results using trace-driven simulations and synthetically generated datasets corroborate our analytical results and also illustrate how collocation games offer a feasible distributed resource management alternative for autonomic/self-organizing systems, in which the adoption of a global optimization approach (centralized or distributed) would be neither practical nor justifiable.NSF (CCF-0820138, CSR-0720604, EFRI-0735974, CNS-0524477, CNS-052016, CCR-0635102); Universidad Pontificia Bolivariana; COLCIENCIAS–Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología "Francisco José de Caldas

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.
    • …
    corecore