3,102 research outputs found

    Regret Bounds for Reinforcement Learning with Policy Advice

    Get PDF
    In some reinforcement learning problems an agent may be provided with a set of input policies, perhaps learned from prior experience or provided by advisors. We present a reinforcement learning with policy advice (RLPA) algorithm which leverages this input set and learns to use the best policy in the set for the reinforcement learning task at hand. We prove that RLPA has a sub-linear regret of \tilde O(\sqrt{T}) relative to the best input policy, and that both this regret and its computational complexity are independent of the size of the state and action space. Our empirical simulations support our theoretical analysis. This suggests RLPA may offer significant advantages in large domains where some prior good policies are provided

    The Simulator: Understanding Adaptive Sampling in the Moderate-Confidence Regime

    Full text link
    We propose a novel technique for analyzing adaptive sampling called the {\em Simulator}. Our approach differs from the existing methods by considering not how much information could be gathered by any fixed sampling strategy, but how difficult it is to distinguish a good sampling strategy from a bad one given the limited amount of data collected up to any given time. This change of perspective allows us to match the strength of both Fano and change-of-measure techniques, without succumbing to the limitations of either method. For concreteness, we apply our techniques to a structured multi-arm bandit problem in the fixed-confidence pure exploration setting, where we show that the constraints on the means imply a substantial gap between the moderate-confidence sample complexity, and the asymptotic sample complexity as Ī“ā†’0\delta \to 0 found in the literature. We also prove the first instance-based lower bounds for the top-k problem which incorporate the appropriate log-factors. Moreover, our lower bounds zero-in on the number of times each \emph{individual} arm needs to be pulled, uncovering new phenomena which are drowned out in the aggregate sample complexity. Our new analysis inspires a simple and near-optimal algorithm for the best-arm and top-k identification, the first {\em practical} algorithm of its kind for the latter problem which removes extraneous log factors, and outperforms the state-of-the-art in experiments

    Robust Control of Uncertain Markov Decision Processes with Temporal Logic Specifications

    Get PDF
    We present a method for designing robust controllers for dynamical systems with linear temporal logic specifications. We abstract the original system by a finite Markov Decision Process (MDP) that has transition probabilities in a specified uncertainty set. A robust control policy for the MDP is generated that maximizes the worst-case probability of satisfying the specification over all transition probabilities in the uncertainty set. To do this, we use a procedure from probabilistic model checking to combine the system model with an automaton representing the specification. This new MDP is then transformed into an equivalent form that satisfies assumptions for stochastic shortest path dynamic programming. A robust version of dynamic programming allows us to solve for a Ļµ\epsilon-suboptimal robust control policy with time complexity O(logā”1/Ļµ)O(\log 1/\epsilon) times that for the non-robust case. We then implement this control policy on the original dynamical system

    Functional Bandits

    Full text link
    We introduce the functional bandit problem, where the objective is to find an arm that optimises a known functional of the unknown arm-reward distributions. These problems arise in many settings such as maximum entropy methods in natural language processing, and risk-averse decision-making, but current best-arm identification techniques fail in these domains. We propose a new approach, that combines functional estimation and arm elimination, to tackle this problem. This method achieves provably efficient performance guarantees. In addition, we illustrate this method on a number of important functionals in risk management and information theory, and refine our generic theoretical results in those cases
    • ā€¦
    corecore