28,744 research outputs found

    Training feedforward neural networks using orthogonal iteration of the Hessian eigenvectors

    Get PDF
    Introduction Training algorithms for Multilayer Perceptrons optimize the set of W weights and biases, w, so as to minimize an error function, E, applied to a set of N training patterns. The well-known back propagation algorithm combines an efficient method of estimating the gradient of the error function in weight space, DE=g, with a simple gradient descent procedure to adjust the weights, Dw = -hg. More efficient algorithms maintain the gradient estimation procedure, but replace the update step with a faster non-linear optimization strategy [1]. Efficient non-linear optimization algorithms are based upon second order approximation [2]. When sufficiently close to a minimum the error surface is approximately quadratic, the shape being determined by the Hessian matrix. Bishop [1] presents a detailed discussion of the properties and significance of the Hessian matrix. In principle, if sufficiently close to a minimum it is possible to move directly to the minimum using the Newton step, -H-1g. In practice, the Newton step is not used as H-1 is very expensive to evaluate; in addition, when not sufficiently close to a minimum, the Newton step may cause a disastrously poor step to be taken. Second order algorithms either build up an approximation to H-1, or construct a search strategy that implicitly exploits its structure without evaluating it; they also either take precautions to prevent steps that lead to a deterioration in error, or explicitly reject such steps. In applying non-linear optimization algorithms to neural networks, a key consideration is the high-dimensional nature of the search space. Neural networks with thousands of weights are not uncommon. Some algorithms have O(W2) or O(W3) memory or execution times, and are hence impracticable in such cases. It is desirable to identify algorithms that have limited memory requirements, particularly algorithms where one may trade memory usage against convergence speed. The paper describes a new training algorithm that has scalable memory requirements, which may range from O(W) to O(W2), although in practice the useful range is limited to lower complexity levels. The algorithm is based upon a novel iterative estimation of the principal eigen-subspace of the Hessian, together with a quadratic step estimation procedure. It is shown that the new algorithm has convergence time comparable to conjugate gradient descent, and may be preferable if early stopping is used as it converges more quickly during the initial phases. Section 2 overviews the principles of second order training algorithms. Section 3 introduces the new algorithm. Second 4 discusses some experiments to confirm the algorithm's performance; section 5 concludes the paper

    A Bramble-Pasciak-like method with applications in optimization

    Get PDF
    Saddle-point systems arise in many applications areas, in fact in any situation where an extremum principle arises with constraints. The Stokes problem describing slow viscous flow of an incompressible fluid is a classic example coming from partial differential equations and in the area of Optimization such problems are ubiquitous.\ud In this manuscript we show how new approaches for the solution of saddle-point systems arising in Optimization can be derived from the Bramble-Pasciak Conjugate Gradient approach widely used in PDEs and more recent generalizations thereof. In particular we derive a class of new solution methods based on the use of Preconditioned Conjugate Gradients in non-standard inner products and demonstrate how these can be understood through more standard machinery. We show connections to Constraint Preconditioning and give the results of numerical computations on a number of standard Optimization test examples

    Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method

    Full text link
    Pipelined Krylov subspace methods (also referred to as communication-hiding methods) have been proposed in the literature as a scalable alternative to classic Krylov subspace algorithms for iteratively computing the solution to a large linear system in parallel. For symmetric and positive definite system matrices the pipelined Conjugate Gradient method outperforms its classic Conjugate Gradient counterpart on large scale distributed memory hardware by overlapping global communication with essential computations like the matrix-vector product, thus hiding global communication. A well-known drawback of the pipelining technique is the (possibly significant) loss of numerical stability. In this work a numerically stable variant of the pipelined Conjugate Gradient algorithm is presented that avoids the propagation of local rounding errors in the finite precision recurrence relations that construct the Krylov subspace basis. The multi-term recurrence relation for the basis vector is replaced by two-term recurrences, improving stability without increasing the overall computational cost of the algorithm. The proposed modification ensures that the pipelined Conjugate Gradient method is able to attain a highly accurate solution independently of the pipeline length. Numerical experiments demonstrate a combination of excellent parallel performance and improved maximal attainable accuracy for the new pipelined Conjugate Gradient algorithm. This work thus resolves one of the major practical restrictions for the useability of pipelined Krylov subspace methods.Comment: 15 pages, 5 figures, 1 table, 2 algorithm

    Super-Linear Convergence of Dual Augmented-Lagrangian Algorithm for Sparsity Regularized Estimation

    Full text link
    We analyze the convergence behaviour of a recently proposed algorithm for regularized estimation called Dual Augmented Lagrangian (DAL). Our analysis is based on a new interpretation of DAL as a proximal minimization algorithm. We theoretically show under some conditions that DAL converges super-linearly in a non-asymptotic and global sense. Due to a special modelling of sparse estimation problems in the context of machine learning, the assumptions we make are milder and more natural than those made in conventional analysis of augmented Lagrangian algorithms. In addition, the new interpretation enables us to generalize DAL to wide varieties of sparse estimation problems. We experimentally confirm our analysis in a large scale â„“1\ell_1-regularized logistic regression problem and extensively compare the efficiency of DAL algorithm to previously proposed algorithms on both synthetic and benchmark datasets.Comment: 51 pages, 9 figure
    • …
    corecore