1,898 research outputs found

    Inexact Block Coordinate Descent Algorithms for Nonsmooth Nonconvex Optimization

    Full text link
    In this paper, we propose an inexact block coordinate descent algorithm for large-scale nonsmooth nonconvex optimization problems. At each iteration, a particular block variable is selected and updated by inexactly solving the original optimization problem with respect to that block variable. More precisely, a local approximation of the original optimization problem is solved. The proposed algorithm has several attractive features, namely, i) high flexibility, as the approximation function only needs to be strictly convex and it does not have to be a global upper bound of the original function; ii) fast convergence, as the approximation function can be designed to exploit the problem structure at hand and the stepsize is calculated by the line search; iii) low complexity, as the approximation subproblems are much easier to solve and the line search scheme is carried out over a properly constructed differentiable function; iv) guaranteed convergence of a subsequence to a stationary point, even when the objective function does not have a Lipschitz continuous gradient. Interestingly, when the approximation subproblem is solved by a descent algorithm, convergence of a subsequence to a stationary point is still guaranteed even if the approximation subproblem is solved inexactly by terminating the descent algorithm after a finite number of iterations. These features make the proposed algorithm suitable for large-scale problems where the dimension exceeds the memory and/or the processing capability of the existing hardware. These features are also illustrated by several applications in signal processing and machine learning, for instance, network anomaly detection and phase retrieval

    Data-Driven Chance Constrained Optimization under Wasserstein Ambiguity Sets

    Get PDF
    We present a data-driven approach for distributionally robust chance constrained optimization problems (DRCCPs). We consider the case where the decision maker has access to a finite number of samples or realizations of the uncertainty. The chance constraint is then required to hold for all distributions that are close to the empirical distribution constructed from the samples (where the distance between two distributions is defined via the Wasserstein metric). We first reformulate DRCCPs under data-driven Wasserstein ambiguity sets and a general class of constraint functions. When the feasibility set of the chance constraint program is replaced by its convex inner approximation, we present a convex reformulation of the program and show its tractability when the constraint function is affine in both the decision variable and the uncertainty. For constraint functions concave in the uncertainty, we show that a cutting-surface algorithm converges to an approximate solution of the convex inner approximation of DRCCPs. Finally, for constraint functions convex in the uncertainty, we compare the feasibility set with other sample-based approaches for chance constrained programs.Comment: A shorter version is submitted to the American Control Conference, 201
    • …
    corecore