4 research outputs found

    Center of Mass Compliance Control of Humanoid using Disturbance Observer

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์ง€๋Šฅ์ •๋ณด์œตํ•ฉํ•™๊ณผ, 2023. 2. ๋ฐ•์žฌํฅ.๋กœ๋ด‡์˜ ์ž‘์—… ํ™˜๊ฒฝ์ด ์ธ๊ฐ„์˜ ์ผ์ƒ๊ณผ ์ ์  ๊ฐ€๊นŒ์›Œ์ง์— ๋”ฐ๋ผ, ์ธ๊ฐ„์˜ ์•ˆ์ „์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์—ฐ ๋™์ž‘ ์ œ์–ด ๋ฐฉ์‹๋“ค์ด ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค ํŠนํžˆ ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์— ์žˆ์–ด์„œ๋Š”, ์ธ๊ฐ„์˜ ์•ˆ์ „์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด ์œ ์—ฐ ๋™์ž‘์„ ์ƒ์„ฑํ•จ์— ๋”ํ•ด ์œ ์—ฐ ๋™์ž‘ ๊ณผ์ •์—์„œ ๋กœ๋ด‡ ๋˜ํ•œ ์•ˆ์ •์ ์œผ๋กœ ๊ท ํ˜•์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์ถ”๊ฐ€๋กœ ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์ด ์ˆ˜ํ–‰ ์ค‘์ธ ์ž‘์—… ํ˜น์€ ํ™˜๊ฒฝ์— ์ ํ•ฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๋…๋ฆฝ์ ์œผ๋กœ ์œ ์—ฐ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ณ  ์ง๊ด€์ ์œผ๋กœ ์ด๋ฅผ ์ œํ•œํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ˜‘๋™ ์ž‘์—…์„ ์œ„ํ•œ ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์˜ ๋ฌด๊ฒŒ ์ค‘์‹ฌ ์œ ์—ฐ ๋™์ž‘ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ƒํƒœ ๊ด€์ธก๊ธฐ์™€ ์™ธ๋ž€ ์–‘์„ฑ ํ”ผ๋“œ๋ฐฑ์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์˜ ๋ฌด๊ฒŒ ์ค‘์‹ฌ ์ œ์–ด ์„ฑ๋Šฅ ๋ชจ๋ธ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์ƒํƒœ ๊ด€์ธก๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋ฌด๊ฒŒ ์ค‘์‹ฌ์— ๋ฐœ์ƒํ•œ ์™ธ๋ž€์„ ๊ด€์ธกํ•œ๋‹ค. ๊ด€์ธก๋œ ์™ธ๋ž€์€ ์ฐธ์กฐ ๋ฌด๊ฒŒ ์ค‘์‹ฌ ๊ฒฝ๋กœ์— ์–‘์„ฑ ํ”ผ๋“œ๋ฐฑ๋˜์–ด ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์˜ ์œ ์—ฐ ๋™์ž‘์„ ์ƒ์„ฑํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ฌด๊ฒŒ ์ค‘์‹ฌ ์ขŒํ‘œ๊ณ„์—์„œ ์ถ• ๋ณ„๋กœ ๋…๋ฆฝ์ ์ธ ์œ ์—ฐ์„ฑ์„ ๊ตฌํ˜„ํ•˜๊ณ  ๊ตฌํ˜„๋œ ์œ ์—ฐ์„ฑ์„ ํ†ตํ•ด ์™ธ๋ž€์— ๋Œ€์‘ํ•˜์—ฌ ๋กœ๋ด‡์ด ๊ท ํ˜•์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ  ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡ DYROS-JET ๋ฅผ ํ™œ์šฉํ•œ ๋™์—ญํ•™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ๋กœ๋ด‡ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค.As the task environment of robots became closer to human , compliant motion control methods that can ensure human safety have been studied. In particular, for the humanoid robot, compliant motion control must also be able to stably maintain the balance In addition, compliant motion control should be able to independently create and intuitively limit the compliance so that compliant motion control can be suitable for the task of humanoid. In this paper, a center of mass (CoM) compliance control algorithm of humanoid robots for collaborative works is proposed. The proposed algorithm is based on the state observer and positive feedback of observed disturbance. With the state observer based on humanoid CoM control performance model, disturbance in each direction can be observed. The positive feedback of disturbances to the reference CoM trajectory enables compliant motion. The main contributions of this algorithm are achieving compliance independently in each axis and maintaining balance against external force. Through dynamic simulations and real robot experiments of Humanoid robot DYROS-JET, the performance of the proposed method was demonstrated.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ 1 ์ œ 2 ์ ˆ ๊ด€๋ จ ์—ฐ๊ตฌ 1 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ 2 ์ œ 4 ์ ˆ ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 3 ์ œ 2 ์žฅ CoM ์œ ์—ฐ ๋™์ž‘ ์ œ์–ด๊ธฐ 4 ์ œ 1 ์ ˆ CoM ์ œ์–ด ์„ฑ๋Šฅ ๋ชจ๋ธ 4 ์ œ 2 ์ ˆ ์ œ์–ด ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ๋ฆ„๋„ ์†Œ๊ฐœ 5 ์ œ 3 ์ ˆ ์ œ์–ด ํ”„๋ ˆ์ž„์›Œํฌ์˜ ์ˆ˜ํ•™์  ๋ชจ๋ธ๋ง 6 ์ œ 3 ์žฅ ๋™์—ญํ•™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 9 ์ œ 1 ์ ˆ ๋กœ๋ด‡ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ ์„ค๋ช… 9 ์ œ 2 ์ ˆ CoM ์œ„์น˜ ์ธก์ • 11 ์ œ 3 ์ ˆ ์œ ์—ฐ์„ฑ ๋…๋ฆฝ ์ œ์–ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 12 ์ œ 4 ์ ˆ ์ถฉ๋Œ ์™ธ๋ž€ ์‹œ ์•ˆ์ • ๊ท ํ˜• ์ œ์–ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 14 ์ œ 4 ์žฅ ์‹ค ํ—˜ 19 ์ œ 1 ์ ˆ ๋กœ๋ด‡ DYROS-JET ์„ค๋ช… 19 ์ œ 2 ์ ˆ ์ถฉ๋Œ ์™ธ๋ž€ ์‹œ ์•ˆ์ • ๊ท ํ˜• ์ œ์–ด ์‹คํ—˜ 22 ์ œ 3 ์ ˆ ์œ„์น˜ ์ถ”์ข… ๋ง‰ํž˜ ์™ธ๋ž€ ์‹คํ—˜ 28 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  33 ์ฐธ๊ณ ๋ฌธํ—Œ 35 Abstract 39์„

    Hierarchical generative modelling for autonomous robots

    Full text link
    Humans can produce complex whole-body motions when interacting with their surroundings, by planning, executing and combining individual limb movements. We investigated this fundamental aspect of motor control in the setting of autonomous robotic operations. We approach this problem by hierarchical generative modelling equipped with multi-level planning-for autonomous task completion-that mimics the deep temporal architecture of human motor control. Here, temporal depth refers to the nested time scales at which successive levels of a forward or generative model unfold, for example, delivering an object requires a global plan to contextualise the fast coordination of multiple local movements of limbs. This separation of temporal scales also motivates robotics and control. Specifically, to achieve versatile sensorimotor control, it is advantageous to hierarchically structure the planning and low-level motor control of individual limbs. We use numerical and physical simulation to conduct experiments and to establish the efficacy of this formulation. Using a hierarchical generative model, we show how a humanoid robot can autonomously complete a complex task that necessitates a holistic use of locomotion, manipulation, and grasping. Specifically, we demonstrate the ability of a humanoid robot that can retrieve and transport a box, open and walk through a door to reach the destination, approach and kick a football, while showing robust performance in presence of body damage and ground irregularities. Our findings demonstrated the effectiveness of using human-inspired motor control algorithms, and our method provides a viable hierarchical architecture for the autonomous completion of challenging goal-directed tasks
    corecore