1,146,928 research outputs found

    Testing homogeneity with galaxy number counts : light-cone metric and general low-redshift expansion for a central observer in a matter dominated isotropic universe without cosmological constant

    Full text link
    As an alternative to dark energy it has been suggested that we may be at the center of an inhomogeneous isotropic universe described by a Lemaitre-Tolman-Bondi (LTB) solution of Einstein's field equations. In order to test this hypothesis we calculate the general analytical formula to fifth order for the redshift spherical shell mass. Using the same analytical method we write the metric in the light-cone by introducing a gauge invariant quantity G(z)G(z) which together with the luminosity distance DL(z)D_L(z) completely determine the light-cone geometry of a LTB model.Comment: 13 page

    General Non-minimal Kinetic coupling to gravity

    Full text link
    We study a new model of scalar field with a general non-minimal kinetic coupling to itself and to the curvature, as a source of dark energy, and analyze the cosmological dynamics of this model and the issue of accelerated expansion. A wide variety of scalar fields and potentials giving rise to power-law expansion have been found. The dynamical equation of state is studied for the two cases, without and with free kinetic term . In the first case, a behavior very close to that of the cosmological constant was found. In the second case, a solution was found, which match the current phenomenology of the dark energy. The model shows a rich variety of dynamical scenarios.Comment: 25 pages, 3 figures; figure added, references adde

    Discriminating Electroweak-ino Parameter Ordering at the LHC and Its Impact on LFV Studies

    Full text link
    Current limit on the dark matter relic abundance may suggest that μ|\mu| should be smaller than prediction in the minimal supergravity scenario (mSUGRA) for moderate m0m_0 and m1/2m_{1/2}. The electroweak-ino parameter M1,M2M_1, M_2 and μ|\mu| are then much closer to each other. This can be realized naturally in the non-universal Higgs mass model (NUHM). Since the heaviest neutralino (χ~40\tilde\chi^0_4) and chargino (χ~2±\tilde\chi^\pm_2) have significant gaugino components, they may appear frequently in the left-handed squark decay and then be detectable at the LHC. In such a case, we showed that the hierarchy of M1,M2M_1, M_2 and μ|\mu| can be determined. In the light slepton mass scenario with non-vanishing lepton-flavor violation (LFV) in the right-handed sector, NUHM with small μ|\mu| corresponds to region of parameter space where strong cancellation among leading contributions to Br(μeγ)Br(\mu\to e\gamma) can occur. We showed that determination of electroweak-ino hierarchy plays a crucial role in resolving cancellation point of Br(μeγ)Br(\mu\to e\gamma) and determination of LFV parameters. We also discussed test of the universality of the slepton masses at the LHC and the implications to SUSY flavor models.Comment: 34 pages, 16 figure

    Dynamical Dark Energy model parameters with or without massive neutrinos

    Full text link
    We use WMAP5 and other cosmological data to constrain model parameters in quintessence cosmologies, focusing also on their shift when we allow for non-vanishing neutrino masses. The Ratra-Peebles (RP) and SUGRA potentials are used here, as examples of slowly or fastly varying state parameter w(a). Both potentials depend on an energy scale \Lambda. Here we confirm the results of previous analysis with WMAP3 data on the upper limits on \Lambda, which turn out to be rather small (down to ~10^{-9} in RP cosmologies and ~10^{-5} for SUGRA). Our constraints on \Lambda are not heavily affected by the inclusion of neutrino mass as a free parameter. On the contrary, when the neutrino mass degree of freedom is opened, significant shifts in the best-fit values of other parameters occur.Comment: 9 pages, 3 figures, submitted to JCA

    A minimal set of invariants as a systematic approach to higher order gravity models: Physical and Cosmological Constraints

    Full text link
    We compare higher order gravity models to observational constraints from magnitude-redshift supernova data, distance to the last scattering surface of the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed systematic approach to higher order gravity models based on minimal sets of curvature invariants, and select models that pass some physical acceptability conditions (free of ghost instabilities, real and positive propagation speeds, and free of separatrices). Models that satisfy these physical and observational constraints are found in this analysis and do provide fits to the data that are very close to those of the LCDM concordance model. However, we find that the limitation of the models considered here comes from the presence of superluminal mode propagations for the constrained parameter space of the models.Comment: 12 pages, 6 figure

    Effects of dark sectors' mutual interaction on the growth of structures

    Full text link
    We present a general formalism to study the growth of dark matter perturbations when dark energy perturbations and interactions between dark sectors are present. We show that dynamical stability of the growth of structure depends on the type of coupling between dark sectors. By taking the appropriate coupling to ensure the stable growth of structure, we observe that the effect of the dark sectors' interaction overwhelms that of dark energy perturbation on the growth function of dark matter perturbation. Due to the influence of the interaction, the growth index can differ from the value without interaction by an amount within the observational sensibility, which provides a possibility to disclose the interaction between dark sectors through future observations on the growth of large structure.Comment: 15 pages, 4 figures, revised version, to appear in JCA

    Designing a novel virtual collaborative environment to support collaboration in design review meetings

    Get PDF
    Project review meetings are part of the project management process and are organised to assess progress and resolve any design conflicts to avoid delays in construction. One of the key challenges during a project review meeting is to bring the stakeholders together and use this time effectively to address design issues as quickly as possible. At present, current technology solutions based on BIM or CAD are information-centric and do not allow project teams to collectively explore the design from a range of perspectives and brainstorm ideas when design conflicts are encountered. This paper presents a system architecture that can be used to support multi-functional team collaboration more effectively during such design review meetings. The proposed architecture illustrates how information-centric BIM or CAD systems can be made human- and team-centric to enhance team communication and problem solving. An implementation of the proposed system architecture has been tested for its utility, likability and usefulness during design review meetings. The evaluation results suggest that the collaboration platform has the potential to enhance collaboration among multi-functional teams

    Late-time acceleration in Higher Dimensional Cosmology

    Get PDF
    We investigate late time acceleration of the universe in higher dimensional cosmology. The content in the universe is assumed to exert pressure which is different in the normal and extra dimensions. Cosmologically viable solutions are found to exist for simple forms of the equation of state. The parameters of the model are fixed by comparing the predictions with supernovae data. While observations stipulate that the matter exerts almost vanishing pressure in the normal dimensions, we assume that, in the extra dimensions, the equation of state is of the form Pρ1γP \propto \, \rho^{1 - \gamma}. For appropriate choice of parameters, a late time acceleration in the universe occurs with q0q_0 and ztrz_{tr} being approximately -0.46 and 0.76 respectively.Comment: 10 pages, 5 figure
    corecore