67 research outputs found

    Teacher-Student Training for Robust Tacotron-based TTS

    Full text link
    While neural end-to-end text-to-speech (TTS) is superior to conventional statistical methods in many ways, the exposure bias problem in the autoregressive models remains an issue to be resolved. The exposure bias problem arises from the mismatch between the training and inference process, that results in unpredictable performance for out-of-domain test data at run-time. To overcome this, we propose a teacher-student training scheme for Tacotron-based TTS by introducing a distillation loss function in addition to the feature loss function. We first train a Tacotron2-based TTS model by always providing natural speech frames to the decoder, that serves as a teacher model. We then train another Tacotron2-based model as a student model, of which the decoder takes the predicted speech frames as input, similar to how the decoder works during run-time inference. With the distillation loss, the student model learns the output probabilities from the teacher model, that is called knowledge distillation. Experiments show that our proposed training scheme consistently improves the voice quality for out-of-domain test data both in Chinese and English systems.Comment: To appear at ICASSP2020, Barcelona, Spai

    Investigation of learning abilities on linguistic features in sequence-to-sequence text-to-speech synthesis

    Full text link
    Neural sequence-to-sequence text-to-speech synthesis (TTS) can produce high-quality speech directly from text or simple linguistic features such as phonemes. Unlike traditional pipeline TTS, the neural sequence-to-sequence TTS does not require manually annotated and complicated linguistic features such as part-of-speech tags and syntactic structures for system training. However, it must be carefully designed and well optimized so that it can implicitly extract useful linguistic features from the input features. In this paper we investigate under what conditions the neural sequence-to-sequence TTS can work well in Japanese and English along with comparisons with deep neural network (DNN) based pipeline TTS systems. Unlike past comparative studies, the pipeline systems also use autoregressive probabilistic modeling and a neural vocoder. We investigated systems from three aspects: a) model architecture, b) model parameter size, and c) language. For the model architecture aspect, we adopt modified Tacotron systems that we previously proposed and their variants using an encoder from Tacotron or Tacotron2. For the model parameter size aspect, we investigate two model parameter sizes. For the language aspect, we conduct listening tests in both Japanese and English to see if our findings can be generalized across languages. Our experiments suggest that a) a neural sequence-to-sequence TTS system should have a sufficient number of model parameters to produce high quality speech, b) it should also use a powerful encoder when it takes characters as inputs, and c) the encoder still has a room for improvement and needs to have an improved architecture to learn supra-segmental features more appropriately

    GELP: GAN-Excited Linear Prediction for Speech Synthesis from Mel-spectrogram

    Full text link
    Recent advances in neural network -based text-to-speech have reached human level naturalness in synthetic speech. The present sequence-to-sequence models can directly map text to mel-spectrogram acoustic features, which are convenient for modeling, but present additional challenges for vocoding (i.e., waveform generation from the acoustic features). High-quality synthesis can be achieved with neural vocoders, such as WaveNet, but such autoregressive models suffer from slow sequential inference. Meanwhile, their existing parallel inference counterparts are difficult to train and require increasingly large model sizes. In this paper, we propose an alternative training strategy for a parallel neural vocoder utilizing generative adversarial networks, and integrate a linear predictive synthesis filter into the model. Results show that the proposed model achieves significant improvement in inference speed, while outperforming a WaveNet in copy-synthesis quality.Comment: Interspeech 2019 accepted versio

    A Survey on Neural Speech Synthesis

    Full text link
    Text to speech (TTS), or speech synthesis, which aims to synthesize intelligible and natural speech given text, is a hot research topic in speech, language, and machine learning communities and has broad applications in the industry. As the development of deep learning and artificial intelligence, neural network-based TTS has significantly improved the quality of synthesized speech in recent years. In this paper, we conduct a comprehensive survey on neural TTS, aiming to provide a good understanding of current research and future trends. We focus on the key components in neural TTS, including text analysis, acoustic models and vocoders, and several advanced topics, including fast TTS, low-resource TTS, robust TTS, expressive TTS, and adaptive TTS, etc. We further summarize resources related to TTS (e.g., datasets, opensource implementations) and discuss future research directions. This survey can serve both academic researchers and industry practitioners working on TTS.Comment: A comprehensive survey on TTS, 63 pages, 18 tables, 7 figures, 457 reference

    FastSpeech 2: Fast and High-Quality End-to-End Text to Speech

    Full text link
    Non-autoregressive text to speech (TTS) models such as FastSpeech can synthesize speech significantly faster than previous autoregressive models with comparable quality. The training of FastSpeech model relies on an autoregressive teacher model for duration prediction (to provide more information as input) and knowledge distillation (to simplify the data distribution in output), which can ease the one-to-many mapping problem (i.e., multiple speech variations correspond to the same text) in TTS. However, FastSpeech has several disadvantages: 1) the teacher-student distillation pipeline is complicated and time-consuming, 2) the duration extracted from the teacher model is not accurate enough, and the target mel-spectrograms distilled from teacher model suffer from information loss due to data simplification, both of which limit the voice quality. In this paper, we propose FastSpeech 2, which addresses the issues in FastSpeech and better solves the one-to-many mapping problem in TTS by 1) directly training the model with ground-truth target instead of the simplified output from teacher, and 2) introducing more variation information of speech (e.g., pitch, energy and more accurate duration) as conditional inputs. Specifically, we extract duration, pitch and energy from speech waveform and directly take them as conditional inputs in training and use predicted values in inference. We further design FastSpeech 2s, which is the first attempt to directly generate speech waveform from text in parallel, enjoying the benefit of fully end-to-end inference. Experimental results show that 1) FastSpeech 2 achieves a 3x training speed-up over FastSpeech, and FastSpeech 2s enjoys even faster inference speed; 2) FastSpeech 2 and 2s outperform FastSpeech in voice quality, and FastSpeech 2 can even surpass autoregressive models. Audio samples are available at https://speechresearch.github.io/fastspeech2/.Comment: Accepted by ICLR 202

    SpeedySpeech: Efficient Neural Speech Synthesis

    Full text link
    While recent neural sequence-to-sequence models have greatly improved the quality of speech synthesis, there has not been a system capable of fast training, fast inference and high-quality audio synthesis at the same time. We propose a student-teacher network capable of high-quality faster-than-real-time spectrogram synthesis, with low requirements on computational resources and fast training time. We show that self-attention layers are not necessary for generation of high quality audio. We utilize simple convolutional blocks with residual connections in both student and teacher networks and use only a single attention layer in the teacher model. Coupled with a MelGAN vocoder, our model's voice quality was rated significantly higher than Tacotron 2. Our model can be efficiently trained on a single GPU and can run in real time even on a CPU. We provide both our source code and audio samples in our GitHub repository.Comment: 5 pages, 3 figures, Interspeech 202

    ESPnet-TTS: Unified, Reproducible, and Integratable Open Source End-to-End Text-to-Speech Toolkit

    Full text link
    This paper introduces a new end-to-end text-to-speech (E2E-TTS) toolkit named ESPnet-TTS, which is an extension of the open-source speech processing toolkit ESPnet. The toolkit supports state-of-the-art E2E-TTS models, including Tacotron~2, Transformer TTS, and FastSpeech, and also provides recipes inspired by the Kaldi automatic speech recognition (ASR) toolkit. The recipes are based on the design unified with the ESPnet ASR recipe, providing high reproducibility. The toolkit also provides pre-trained models and samples of all of the recipes so that users can use it as a baseline. Furthermore, the unified design enables the integration of ASR functions with TTS, e.g., ASR-based objective evaluation and semi-supervised learning with both ASR and TTS models. This paper describes the design of the toolkit and experimental evaluation in comparison with other toolkits. The experimental results show that our models can achieve state-of-the-art performance comparable to the other latest toolkits, resulting in a mean opinion score (MOS) of 4.25 on the LJSpeech dataset. The toolkit is publicly available at https://github.com/espnet/espnet.Comment: Accepted to ICASSP2020. Demo HP: https://espnet.github.io/icassp2020-tts

    Non-Attentive Tacotron: Robust and Controllable Neural TTS Synthesis Including Unsupervised Duration Modeling

    Full text link
    This paper presents Non-Attentive Tacotron based on the Tacotron 2 text-to-speech model, replacing the attention mechanism with an explicit duration predictor. This improves robustness significantly as measured by unaligned duration ratio and word deletion rate, two metrics introduced in this paper for large-scale robustness evaluation using a pre-trained speech recognition model. With the use of Gaussian upsampling, Non-Attentive Tacotron achieves a 5-scale mean opinion score for naturalness of 4.41, slightly outperforming Tacotron 2. The duration predictor enables both utterance-wide and per-phoneme control of duration at inference time. When accurate target durations are scarce or unavailable in the training data, we propose a method using a fine-grained variational auto-encoder to train the duration predictor in a semi-supervised or unsupervised manner, with results almost as good as supervised training.Comment: Under review as a conference paper at ICLR 202

    Expressive TTS Training with Frame and Style Reconstruction Loss

    Full text link
    We propose a novel training strategy for Tacotron-based text-to-speech (TTS) system to improve the expressiveness of speech. One of the key challenges in prosody modeling is the lack of reference that makes explicit modeling difficult. The proposed technique doesn't require prosody annotations from training data. It doesn't attempt to model prosody explicitly either, but rather encodes the association between input text and its prosody styles using a Tacotron-based TTS framework. Our proposed idea marks a departure from the style token paradigm where prosody is explicitly modeled by a bank of prosody embeddings. The proposed training strategy adopts a combination of two objective functions: 1) frame level reconstruction loss, that is calculated between the synthesized and target spectral features; 2) utterance level style reconstruction loss, that is calculated between the deep style features of synthesized and target speech. The proposed style reconstruction loss is formulated as a perceptual loss to ensure that utterance level speech style is taken into consideration during training. Experiments show that the proposed training strategy achieves remarkable performance and outperforms a state-of-the-art baseline in both naturalness and expressiveness. To our best knowledge, this is the first study to incorporate utterance level perceptual quality as a loss function into Tacotron training for improved expressiveness.Comment: Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processin

    RyanSpeech: A Corpus for Conversational Text-to-Speech Synthesis

    Full text link
    This paper introduces RyanSpeech, a new speech corpus for research on automated text-to-speech (TTS) systems. Publicly available TTS corpora are often noisy, recorded with multiple speakers, or lack quality male speech data. In order to meet the need for a high quality, publicly available male speech corpus within the field of speech recognition, we have designed and created RyanSpeech which contains textual materials from real-world conversational settings. These materials contain over 10 hours of a professional male voice actor's speech recorded at 44.1 kHz. This corpus's design and pipeline make RyanSpeech ideal for developing TTS systems in real-world applications. To provide a baseline for future research, protocols, and benchmarks, we trained 4 state-of-the-art speech models and a vocoder on RyanSpeech. The results show 3.36 in mean opinion scores (MOS) in our best model. We have made both the corpus and trained models for public use
    • …
    corecore