3 research outputs found

    Workload Scheduling on heterogeneous Mobile Edge Cloud in 5G networks to Minimize SLA Violation

    Full text link
    Smart devices have become an indispensable part of our lives and gain increasing applicability in almost every area. Latency-aware applications such as Augmented Reality (AR), autonomous driving, and online gaming demand more resources such as network bandwidth and computational capabilities. Since the traditional mobile networks cannot fulfill the required bandwidth and latency, Mobile Edge Cloud (MEC) emerged to provide cloud computing capabilities in the proximity of users on 5G networks. In this paper, we consider a heterogeneous MEC network with numerous mobile users that send their tasks to MEC servers. Each task has a maximum acceptable response time. Non-uniform distribution of users makes some MEC servers hotspots that cannot take more. A solution is to relocate the tasks among MEC servers, called Workload Migration. We formulate this problem of task scheduling as a mixed-integer non-linear optimization problem to minimize the number of Service Level Agreement (SLA) violations. Since solving this optimization problem has high computational complexity, we introduce a greedy algorithm called MESA, Migration Enabled Scheduling Algorithm, which reaches a near-optimal solution quickly. Our experiments show that in the term of SLA violation, MESA is only 8% and 11% far from the optimal choice on the average and the worst-case, respectively. Moreover, the migration enabled solution can reduce SLA violations by about 30% compare to assigning tasks to MEC servers without migration.Comment: 12 pages, 8 figures, 4 tables contact: hadadian AT ce DOT sharif DOT ed

    LSTM-based Traffic Load Balancing and Resource Allocation for an Edge System

    Full text link
    The massive deployment of small cell Base Stations (SBSs) empowered with computing capabilities presents one of the most ingenious solutions adopted for 5G cellular networks towards meeting the foreseen data explosion and the ultra-low latency demanded by mobile applications. This empowerment of SBSs with Multi-access Edge Computing (MEC) has emerged as a tentative solution to overcome the latency demands and bandwidth consumption required by mobile applications at the network edge. The MEC paradigm offers a limited amount of resources to support computation, thus mandating the use of intelligence mechanisms for resource allocation. The use of green energy for powering the network apparatuses (e.g., Base Stations (BSs), MEC servers) has attracted attention towards minimizing the carbon footprint and network operational costs. However, due to their high intermittency and unpredictability, the adoption of learning methods is a requisite. Towards intelligent edge system management, this paper proposes a Green-based Edge Network Management (GENM) algorithm, which is a online edge system management algorithm for enabling green-based load balancing in BSs and energy savings within the MEC server. The main goal is to minimize the overall energy consumption and guarantee the Quality of Service (QoS) within the network. To achieve this, the GENM algorithm performs dynamic management of BSs, autoscaling and reconfiguration of the computing resources, and on/off switching of the fast tunable laser drivers coupled with location-aware traffic scheduling in the MEC server. The obtained simulation results validate our analysis and demonstrate the superior performance of GENM compared to a benchmark algorithm.Comment: 8 Figures, 13 page

    Delay Characterization of Mobile Edge Computing for 6G Time-Sensitive Services

    Full text link
    Time-sensitive services (TSSs) have been widely envisioned for future sixth generation (6G) wireless communication networks. Due to its inherent low-latency advantage, mobile edge computing (MEC) will be an indispensable enabler for TSSs. The random characteristics of the delay experienced by users are key metrics reflecting the quality of service (QoS) of TSSs. Most existing studies on MEC have focused on the average delay. Only a few research efforts have been devoted to other random delay characteristics, such as the delay bound violation probability and the probability distribution of the delay, by decoupling the transmission and computation processes of MEC. However, if these two processes could not be decoupled, the coupling will bring new challenges to analyzing the random delay characteristics. In this paper, an MEC system with a limited computation buffer at the edge server is considered. In this system, the transmission process and computation process form a feedback loop and could not be decoupled. We formulate a discrete-time two-stage tandem queueing system. Then, by using the matrix-geometric method, we obtain the estimation methods for the random delay characteristics, including the probability distribution of the delay, the delay bound violation probability, the average delay and the delay standard deviation. The estimation methods are verified by simulations. The random delay characteristics are analyzed by numerical experiments, which unveil the coupling relationship between the transmission process and computation process for MEC. These results will largely facilitate elaborate allocation of communication and computation resources to improve the QoS of TSSs.Comment: 17 pages, 11 figures. This paper has been accepted by IEEE Internet of Things Journa
    corecore