584 research outputs found

    Space robotics: Recent accomplishments and opportunities for future research

    Get PDF
    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.

    Control algorithm implementation for a redundant degree of freedom manipulator

    Get PDF
    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation

    Improving Automated Operations of Heavy-Duty Manipulators with Modular Model-Based Control Design

    Get PDF
    The rapid development of robotization and automation in mobile working machines aims to increase productivity and safety in many industrial sectors. In heavy-duty applications, hydraulically actuated manipulators are the common solution due to their large power-to-weight ratio. As hydraulic systems can exhibit nonlinear dynamic behavior, automated operations with closed-loop control become challenging. In industrial applications, the dexterity of operations for manipulators is ensured by providing interfaces to equip product variants with different tool attachments. By considering these domain-specific tool attachments for heavy-duty hydraulic manipulators (HHMs), the autonomous robotic operating development for all product variants might be a time-consuming process. This thesis aims to develop a modular nonlinear model-based (NMB) control method for HHMs to enable systematic NMB model reuse and control system modularity across different HHM product variants with actuators and tool attachments. Equally importantly, the properties of NMB control are used to improve the high-performance control for multi degrees-of-freedom robotic HHMs, as rigorously stability-guaranteed control systems have been shown to provide superior performance. To achieve these objectives, four research problems (RPs) on HHM controls are addressed. The RPs are focused on damping control methods in underactuated tool attachments, compensating for static actuator nonlinearities, and, equally significantly, improving overall control performance. The fourth RP is introduced for hydraulic series elastic actuators (HSEAs) in HHM applications, which can be regarded as supplementing NMB control with the aim of improving force controllability. Six publications are presented to investigate the RPs in this thesis. The control development focus was on modular NMB control design for HHMs equipped with different actuators and tool attachments consisting of passive and actuated joints. The designed control methods were demonstrated on a full-size HHM and a novel HSEA concept in a heavy-duty experimental setup. The results verified that modular control design for HHM systems can be used to decrease the modifications required to use the manipulator with different tool attachments and floating-base environments

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    The AEROARMS Project: Aerial Robots with Advanced Manipulation Capabilities for Inspection and Maintenance

    Get PDF
    This article summarizes new aerial robotic manipulation technologies and methods—aerial robotic manipulators with dual arms and multidirectional thrusters—developed in the AEROARMS project for outdoor industrial inspection and maintenance (I&M). Our report deals with the control systems, including the control of the interaction forces and the compliance the teleoperation, which uses passivity to tackle the tradeoff between stability and performance the perception methods for localization, mapping, and inspection the planning methods, including a new control-aware approach for aerial manipulation. Finally, we describe a novel industrial platform with multidirectional thrusters and a new arm design to increase the robustness in industrial contact inspections. In addition, the lessons learned in applying the platform to outdoor aerial manipulation for I&M are pointed out

    ControlShell: A real-time software framework

    Get PDF
    The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools

    Identification of robotic manipulators' inverse dynamics coefficients via model-based adaptive networks

    Get PDF
    The values of a given manipulator's dynamics coefficients need to be accurately identified in order to employ model-based algorithms in the control of its motion. This thesis details the development of a novel form of adaptive network which is capable of accurately learning the coefficients of systems, such as manipulator inverse dynamics, where the algebraic form is known but the coefficients' values are not. Empirical motion data from a pair of PUMA 560s has been processed by the Context-Sensitive Linear Combiner (CSLC) network developed, and the coefficients of their inverse dynamics identified. The resultant precision of control is shown to be superior to that achieved from employing dynamics coefficients derived from direct measurement. As part of the development of the CSLC network, the process of network learning is examined. This analysis reveals that current network architectures for processing analogue output systems with high input order are highly unlikely to produce solutions that are good estimates throughout the entire problem space. In contrast, the CSLC network is shown to generalise intrinsically as a result of its structure, whilst its training is greatly simplified by the presence of only one minima in the network's error hypersurface. Furthermore, a fine-tuning algorithm for network training is presented which takes advantage of the CSLC network's single adaptive layer structure and does not rely upon gradient descent of the network error hypersurface, which commonly slows the later stages of network training

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center
    corecore