5 research outputs found

    Beyond spiking networks: the computational advantages of dendritic amplification and input segregation

    Full text link
    The brain can efficiently learn a wide range of tasks, motivating the search for biologically inspired learning rules for improving current artificial intelligence technology. Most biological models are composed of point neurons, and cannot achieve the state-of-the-art performances in machine learning. Recent works have proposed that segregation of dendritic input (neurons receive sensory information and higher-order feedback in segregated compartments) and generation of high-frequency bursts of spikes would support error backpropagation in biological neurons. However, these approaches require propagating errors with a fine spatio-temporal structure to the neurons, which is unlikely to be feasible in a biological network. To relax this assumption, we suggest that bursts and dendritic input segregation provide a natural support for biologically plausible target-based learning, which does not require error propagation. We propose a pyramidal neuron model composed of three separated compartments. A coincidence mechanism between the basal and the apical compartments allows for generating high-frequency bursts of spikes. This architecture allows for a burst-dependent learning rule, based on the comparison between the target bursting activity triggered by the teaching signal and the one caused by the recurrent connections, providing the support for target-based learning. We show that this framework can be used to efficiently solve spatio-temporal tasks, such as the store and recall of 3D trajectories. Finally, we suggest that this neuronal architecture naturally allows for orchestrating ``hierarchical imitation learning'', enabling the decomposition of challenging long-horizon decision-making tasks into simpler subtasks. This can be implemented in a two-level network, where the high-network acts as a ``manager'' and produces the contextual signal for the low-network, the ``worker''.Comment: arXiv admin note: substantial text overlap with arXiv:2201.1171

    Active Predicting Coding: Brain-Inspired Reinforcement Learning for Sparse Reward Robotic Control Problems

    Full text link
    In this article, we propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC), designing an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards, embodying the principles of planning-as-inference. Concretely, we craft an adaptive agent system, which we call active predictive coding (ActPC), that balances an internally-generated epistemic signal (meant to encourage intelligent exploration) with an internally-generated instrumental signal (meant to encourage goal-seeking behavior) to ultimately learn how to control various simulated robotic systems as well as a complex robotic arm using a realistic robotics simulator, i.e., the Surreal Robotics Suite, for the block lifting task and can pick-and-place problems. Notably, our experimental results demonstrate that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.Comment: Contains appendix with pseudocode and additional detail

    Brain-Inspired Computational Intelligence via Predictive Coding

    Full text link
    Artificial intelligence (AI) is rapidly becoming one of the key technologies of this century. The majority of results in AI thus far have been achieved using deep neural networks trained with the error backpropagation learning algorithm. However, the ubiquitous adoption of this approach has highlighted some important limitations such as substantial computational cost, difficulty in quantifying uncertainty, lack of robustness, unreliability, and biological implausibility. It is possible that addressing these limitations may require schemes that are inspired and guided by neuroscience theories. One such theory, called predictive coding (PC), has shown promising performance in machine intelligence tasks, exhibiting exciting properties that make it potentially valuable for the machine learning community: PC can model information processing in different brain areas, can be used in cognitive control and robotics, and has a solid mathematical grounding in variational inference, offering a powerful inversion scheme for a specific class of continuous-state generative models. With the hope of foregrounding research in this direction, we survey the literature that has contributed to this perspective, highlighting the many ways that PC might play a role in the future of machine learning and computational intelligence at large.Comment: 37 Pages, 9 Figure

    A Theoretical Framework for Target Propagation

    Full text link
    The success of deep learning, a brain-inspired form of AI, has sparked interest in understanding how the brain could similarly learn across multiple layers of neurons. However, the majority of biologically-plausible learning algorithms have not yet reached the performance of backpropagation (BP), nor are they built on strong theoretical foundations. Here, we analyze target propagation (TP), a popular but not yet fully understood alternative to BP, from the standpoint of mathematical optimization. Our theory shows that TP is closely related to Gauss-Newton optimization and thus substantially differs from BP. Furthermore, our analysis reveals a fundamental limitation of difference target propagation (DTP), a well-known variant of TP, in the realistic scenario of non-invertible neural networks. We provide a first solution to this problem through a novel reconstruction loss that improves feedback weight training, while simultaneously introducing architectural flexibility by allowing for direct feedback connections from the output to each hidden layer. Our theory is corroborated by experimental results that show significant improvements in performance and in the alignment of forward weight updates with loss gradients, compared to DTP.Comment: 13 pages and 4 figures in main manuscript; 41 pages and 8 figures in supplementary materia
    corecore