840 research outputs found
Tardigrade diversity around Syowa Station, Dronning Maud Land in East Antarctica
The Ninth Symposium on Polar Science/Ordinary sessions: [OB] Polar biology, Wed. 5 Dec. / Entrance Hall (1st floor), National Institute of Polar Researc
Integrative description of Macrobiotus canaricus sp. nov. with notes on M. recens (Eutardigrada : Macrobiotidae)
In this paper we describe Macrobiotus canaricus sp. nov., a new tardigrade species of the Macrobiotus hufelandi group from the Canary Islands. Moreover, with the use of DNA sequencing, we confirm that Macrobiotus recens Cuénot, 1932 represents the hufelandi group, even though eggs laid by this species do not exhibit the typical hufelandi group morphology. Our study is based on both classical taxonomic methods that include morphological and morphometric analyses conducted with the use of light and scanning electron microscopy, and on the analysis of nucleotide sequences of four molecular markers (three nuclear: 18S rRNA, 28S rRNA, ITS-2, and one mitochondrial: COI). Our analyses revealed that M. canaricus sp. nov. is most similar to Macrobiotus almadai Fontoura et al., 2008 from the Archipelago of the Azores, from which it differs by the absence of granulation patches on the external and internal surfaces of legs I–III as well as by the absence of a cuticular pore in the centre of the external patch on legs I–III. Molecular sequences allowed us to pinpoint the phylogenetic positions of M. canaricus sp. nov. and M. recens within the M. hufelandi group
Recommended from our members
The tardigrade damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals.
Tardigrades, also known as water bears, are animals that can survive extreme conditions. The tardigrade Ramazzottius varieornatus contains a unique nuclear protein termed Dsup, for damage suppressor, which can increase the resistance of human cells to DNA damage under conditions, such as ionizing radiation or hydrogen peroxide treatment, that generate hydroxyl radicals. Here we find that R. varieornatus Dsup is a nucleosome-binding protein that protects chromatin from hydroxyl radicals. Moreover, a Dsup ortholog from the tardigrade Hypsibius exemplaris similarly binds to nucleosomes and protects DNA from hydroxyl radicals. Strikingly, a conserved region in Dsup proteins exhibits sequence similarity to the nucleosome-binding domain of vertebrate HMGN proteins and is functionally important for nucleosome binding and hydroxyl radical protection. These findings suggest that Dsup promotes the survival of tardigrades under diverse conditions by a direct mechanism that involves binding to nucleosomes and protecting chromosomal DNA from hydroxyl radicals
Recommended from our members
The tardigrade damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals.
Tardigrades, also known as water bears, are animals that can survive extreme conditions. The tardigrade Ramazzottius varieornatus contains a unique nuclear protein termed Dsup, for damage suppressor, which can increase the resistance of human cells to DNA damage under conditions, such as ionizing radiation or hydrogen peroxide treatment, that generate hydroxyl radicals. Here we find that R. varieornatus Dsup is a nucleosome-binding protein that protects chromatin from hydroxyl radicals. Moreover, a Dsup ortholog from the tardigrade Hypsibius exemplaris similarly binds to nucleosomes and protects DNA from hydroxyl radicals. Strikingly, a conserved region in Dsup proteins exhibits sequence similarity to the nucleosome-binding domain of vertebrate HMGN proteins and is functionally important for nucleosome binding and hydroxyl radical protection. These findings suggest that Dsup promotes the survival of tardigrades under diverse conditions by a direct mechanism that involves binding to nucleosomes and protecting chromosomal DNA from hydroxyl radicals
Tardigrade diversity around Syowa Station, Dronning Maud Land in East Antarctica
The Ninth Symposium on Polar Science/Ordinary sessions: [OB] Polar biology, Wed. 5 Dec. / Entrance Hall (1st floor), National Institute of Polar Researc
Tardigrade diversity of Inhovde, Dronning Maud Land in East Antarctica
第7回極域科学シンポジウム:[OB] 極域生物圏11月29日(火)国立極地研究所 1階 交流アトリウ
Co- variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica
Data from six sites in Victoria Land (72–77°S) investigating co-variation in soil communities (microbial and invertebrate) with biogeochemical properties showthe influence of soil properties on habitat suitability varied among local landscapes as well as across climate gradients. Species richness of metazoan invertebrates (Nematoda, Tardigrada and Rotifera) was similar to previous descriptions in this region, though identification of three cryptic nematode species of Eudorylaimus through DNA analysis contributed to the understanding of controls over habitat preferences for individual species. Denaturing Gradient Gel Electrophoresis profiles revealed unexpectedly high diversity of bacteria. Distribution of distinct bacterial communities was associated with specific sites in northern and southern Victoria Land, as was the distribution of nematode and tardigrade species. Variation in soil metazoan communities was related to differences in soil organic matter, while bacterial diversity and community structure were not strongly correlated with any single soil property. There were no apparent correlations between metazoan and bacterial diversity, suggesting that controls over distribution and habitat suitability are different for bacterial and metazoan communities. Our results imply that top-down controls over bacterial diversity mediated by their metazoan consumers are not significant determinants of bacterial community structure and biomass in these ecosystems
Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum
<p>Abstract</p> <p>Background</p> <p>Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade <it>Milnesium tardigradum</it> were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress.</p> <p>Results</p> <p>In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source during rehydration.</p> <p>Conclusions</p> <p>The functional module identifies relationships among changed metabolites (e.g. spermidine) and reactions and provides first insights into important altered metabolic pathways. With sparse and diverse data available, the presented integrated metabolite network approach is suitable to integrate all existing data and analyse it in a combined manner.</p
Effect of lifespan and age on reproductive performance of the tardigrade Acutuncus antarcticus: minimal reproductive senescence
- …
