3 research outputs found

    Tail Probabilities for Randomized Program Runtimes via Martingales for Higher Moments

    Full text link
    Programs with randomization constructs is an active research topic, especially after the recent introduction of martingale-based analysis methods for their termination and runtimes. Unlike most of the existing works that focus on proving almost-sure termination or estimating the expected runtime, in this work we study the tail probabilities of runtimes-such as "the execution takes more than 100 steps with probability at most 1%." To this goal, we devise a theory of supermartingales that overapproximate higher moments of runtime. These higher moments, combined with a suitable concentration inequality, yield useful upper bounds of tail probabilities. Moreover, our vector-valued formulation enables automated template-based synthesis of those supermartingales. Our experiments suggest the method's practical use.Comment: 38 page

    Analysis of Bayesian Networks via Prob-Solvable Loops

    Full text link
    Prob-solvable loops are probabilistic programs with polynomial assignments over random variables and parametrised distributions, for which the full automation of moment-based invariant generation is decidable. In this paper we extend Prob-solvable loops with new features essential for encoding Bayesian networks (BNs). We show that various BNs, such as discrete, Gaussian, conditional linear Gaussian and dynamic BNs, can be naturally encoded as Prob-solvable loops. Thanks to these encodings, we can automatically solve several BN related problems, including exact inference, sensitivity analysis, filtering and computing the expected number of rejecting samples in sampling-based procedures. We evaluate our work on a number of BN benchmarks, using automated invariant generation within Prob-solvable loop analysis

    Concentration-Bound Analysis for Probabilistic Programs and Probabilistic Recurrence Relations

    Full text link
    Analyzing probabilistic programs and randomized algorithms are classical problems in computer science. The first basic problem in the analysis of stochastic processes is to consider the expectation or mean, and another basic problem is to consider concentration bounds, i.e. showing that large deviations from the mean have small probability. Similarly, in the context of probabilistic programs and randomized algorithms, the analysis of expected termination time/running time and their concentration bounds are fundamental problems.In this work, we focus on concentration bounds for probabilistic programs and probabilistic recurrences of randomized algorithms. For probabilistic programs, the basic technique to achieve concentration bounds is to consider martingales and apply the classical Azuma's inequality. For probabilistic recurrences of randomized algorithms, Karp's classical "cookbook" method, which is similar to the master theorem for recurrences, is the standard approach to obtain concentration bounds. In this work, we propose a novel approach for deriving concentration bounds for probabilistic programs and probabilistic recurrence relations through the synthesis of exponential supermartingales. For probabilistic programs, we present algorithms for synthesis of such supermartingales in several cases. We also show that our approach can derive better concentration bounds than simply applying the classical Azuma's inequality over various probabilistic programs considered in the literature. For probabilistic recurrences, our approach can derive tighter bounds than the Karp's well-established methods on classical algorithms. Moreover, we show that our approach could derive bounds comparable to the optimal bound for quicksort, proposed by McDiarmid and Hayward. We also present a prototype implementation that can automatically infer these boundsComment: 28 page
    corecore