10,869 research outputs found

    Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for Autonomous Driving

    Full text link
    Tactical decision making for autonomous driving is challenging due to the diversity of environments, the uncertainty in the sensor information, and the complex interaction with other road users. This paper introduces a general framework for tactical decision making, which combines the concepts of planning and learning, in the form of Monte Carlo tree search and deep reinforcement learning. The method is based on the AlphaGo Zero algorithm, which is extended to a domain with a continuous state space where self-play cannot be used. The framework is applied to two different highway driving cases in a simulated environment and it is shown to perform better than a commonly used baseline method. The strength of combining planning and learning is also illustrated by a comparison to using the Monte Carlo tree search or the neural network policy separately

    How Do Drivers Self-Regulate their Secondary Task Engagements? The Effect of Driving Automation on Touchscreen Interactions and Glance Behavior

    Full text link
    With ever-improving driver assistance systems and large touchscreens becoming the main in-vehicle interface, drivers are more tempted than ever to engage in distracting non-driving-related tasks. However, little research exists on how driving automation affects drivers' self-regulation when interacting with center stack touchscreens. To investigate this, we employ multilevel models on a real-world driving dataset consisting of 10,139 sequences. Our results show significant differences in drivers' interaction and glance behavior in response to varying levels of driving automation, vehicle speed, and road curvature. During partially automated driving, drivers are not only more likely to engage in secondary touchscreen tasks, but their mean glance duration toward the touchscreen also increases by 12% (Level 1) and 20% (Level 2) compared to manual driving. We further show that the effect of driving automation on drivers' self-regulation is larger than that of vehicle speed and road curvature. The derived knowledge can facilitate the safety evaluation of infotainment systems and the development of context-aware driver monitoring systems.Comment: 14th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Application

    Driving automation: Learning from aviation about design philosophies

    Get PDF
    Full vehicle automation is predicted to be on British roads by 2030 (Walker et al., 2001). However, experience in aviation gives us some cause for concern for the 'drive-by-wire' car (Stanton and Marsden, 1996). Two different philosophies have emerged in aviation for dealing with the human factor: hard vs. soft automation, depending on whether the computer or the pilot has ultimate authority (Hughes and Dornheim, 1995). This paper speculates whether hard or soft automation provides the best solution for road vehicles, and considers an alternative design philosophy in vehicles of the future based on coordination and cooperation

    An assisted driver model. Towards developing driver assistance systems by allocating support dependent on driving situations

    Get PDF
    Partially automated driving is expected to increase traffic efficiency. How-ever, automation causes human factors concerns. One concern is the reduced operability during transitions between automation level, e.g. when failures occur. These concerns ask for a more justifiable implementation of automation for automobile appliances. As a first step towards applicable solutions for driver support, we developed the assisted driver model. The attempt with this model was to answer: what driving situations are in need for what kind of support? The influence of different levels of automation on task performance, were used to define 7 recommended support types relevant for driver assistance. For the allocation of recommended support types to distinguished driving situations we then considered the prerequisites to provide good operability in terms of the avoidance of errors and familiarity with driving circumstances. An assessment of adaptive cruise con-trol showed the model‟s potential to help developing advanced driver assistance systems whilst anticipating concerns associated with the appliance of partial automation

    Evaluation of ADAS with a supported-driver model for desired allocation of tasks between human and technology performance

    Get PDF
    Partly automated driving is relevant for solving mobility problems, but also causes concerns with respect to the driver‟s reliability in task performance. The supported driver model presented in this paper is therefore intended to answer the question, what type of support and in which circumstances, will enhance the driver‟s ability to control the vehicle. It became apparent that prerequisites for performing tasks differ per driving task‟s type and require different support. The possible support for each driving task‟s type, has been combined with support-types to reduce the error causations from each different performance level (i.e. knowledge-based, rule-based and skill-based performance). The allocation of support in relation to performance level and driving task‟s type resulted in a supported driver model and this model relates the requested circumstances to appropriate support types. Among three tested ADAS systems, semi-automated parking showed best allocation of support; converting the demanding parallel parking task into a rather routine-like operation

    Human-centered challenges and contributions for the implementation of automated driving

    Get PDF
    Automated driving is expected to increase safety and efficiency of road transport. With regard to the implementation of automated driving, we observed that those aspects which need to be further developed especially relate to human capabilities. Based on this observation and the understanding that automation will most likely be applied in terms of partially automated driving, we distinguished 2 major challenges for the implementation of partially automated driving: (1) Defining appropriate levels of automation, and; (2) Developing appropriate transitions between manual control and automation. The Assisted Driver Model has provided a framework for the first challenge, because this model recommends levels of automation dependent on traffic situations. To conclude, this research also provided brief directions on the second challenge, i.e. solutions how to accommodate drivers with partially automatio
    • …
    corecore