7 research outputs found

    The Tactician (extended version): A Seamless, Interactive Tactic Learner and Prover for Coq

    Full text link
    We present Tactician, a tactic learner and prover for the Coq Proof Assistant. Tactician helps users make tactical proof decisions while they retain control over the general proof strategy. To this end, Tactician learns from previously written tactic scripts and gives users either suggestions about the next tactic to be executed or altogether takes over the burden of proof synthesis. Tactician's goal is to provide users with a seamless, interactive, and intuitive experience together with robust and adaptive proof automation. In this paper, we give an overview of Tactician from the user's point of view, regarding both day-to-day usage and issues of package dependency management while learning in the large. Finally, we give a peek into Tactician's implementation as a Coq plugin and machine learning platform.Comment: 19 pages, 2 figures. This is an extended version of a paper published in CICM-2020. For the project website, see https://coq-tactician.github.i

    Passport: Improving Automated Formal Verification Using Identifiers

    Full text link
    Formally verifying system properties is one of the most effective ways of improving system quality, but its high manual effort requirements often render it prohibitively expensive. Tools that automate formal verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These tools are effective because of the richness of the data the proof corpora contain. This richness comes from the stylistic conventions followed by communities of proof developers, together with the logical systems beneath proof assistants. However, this richness remains underexploited, with most work thus far focusing on architecture rather than making the most of the proof data. In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq model with three new encoding mechanisms for identifiers: category vocabulary indexing, subword sequence modeling, and path elaboration. We compare Passport to three existing base tools which Passport can enhance: ASTactic, Tac, and Tok. In head-to-head comparisons, Passport automatically proves 29% more theorems than the best-performing of these base tools. Combining the three Passport-enhanced tools automatically proves 38% more theorems than the three base tools together, without Passport's enhancements. Finally, together, these base tools and Passport-enhanced tools prove 45% more theorems than the combined base tools without Passport's enhancements. Overall, our findings suggest that modeling identifiers can play a significant role in improving proof synthesis, leading to higher-quality software

    Tactic Learning and Proving for the Coq Proof Assistant

    No full text

    Tactic Learning and Proving for the Coq Proof Assistant

    No full text
    corecore