1,283,228 research outputs found

    Investigating the clinical advantages of a robotic linac equipped with a multileaf collimator in the treatment of brain and prostate cancer patients.

    Get PDF
    The purpose of this study was to evaluate the performance of a commercially available CyberKnife system with a multileaf collimator (CK-MLC) for stereotactic body radiotherapy (SBRT) and standard fractionated intensity-modulated radiotherapy (IMRT) applications. Ten prostate and ten intracranial cases were planned for the CK-MLC. Half of these cases were compared with clinically approved SBRT plans generated for the CyberKnife with circular collimators, and the other half were compared with clinically approved standard fractionated IMRT plans generated for conventional linacs. The plans were compared on target coverage, conformity, homogeneity, dose to organs at risk (OAR), low dose to the surrounding tissue, total monitor units (MU), and treatment time. CK-MLC plans generated for the SBRT cases achieved more homogeneous dose to the target than the CK plans with the circular collimators, for equivalent coverage, conformity, and dose to OARs. Total monitor units were reduced by 40% to 70% and treatment time was reduced by half. The CK-MLC plans generated for the standard fractionated cases achieved prescription isodose lines between 86% and 93%, which was 2%-3% below the plans generated for conventional linacs. Compared to standard IMRT plans, the total MU were up to three times greater for the prostate (whole pelvis) plans and up to 1.4 times greater for the intracranial plans. Average treatment time was 25 min for the whole pelvis plans and 19 min for the intracranial cases. The CK-MLC system provides significant improvements in treatment time and target homogeneity compared to the CK system with circular collimators, while maintaining high conformity and dose sparing to critical organs. Standard fractionated plans for large target volumes (>100 cm3) were generated that achieved high prescription isodose levels. The CK-MLC system provides more efficient SRS and SBRT treatments and, in select clinical cases, might be a potential alternative for standard fractionated treatments. PACS numbers: 87.56.nk, 87.56.bd

    Case study: obesity, genital oedema and lower limb compression bandaging

    Get PDF
    The purpose of this article is to present an evidenced based rationale for lymphoedema compression bandaging one aspect of treatment for a patient with complex lower limb lymphoedema. The current health care climate requires treatment decisions to be transparent based on the best available evidence. The challenge faced by community nurses is to formulate treatment plans which incorporate the patients’ preferences and best utilise limited resources provided by clinical environments. The article appraises research in order to formulate a suitable treatment plan and provides discussion and reflection regarding the challenges faced by the nursing profession in achieving evidence based practice. Evidence based practice is beneficial in formulating patient centred and cost effective treatment plans, developing competence is not straightforward, however clinical guidelines can provide much needed guidance

    Commissioning and Evaluation of an Electronic Portal Imaging Device-Based In-Vivo Dosimetry Software.

    Get PDF
    This study reports on our experience with the in-vivo dose verification software, EPIgray® (DOSIsoft, Cachan, France). After the initial commissioning process, clinical experiments on phantom treatments were evaluated to assess the level of accuracy of the electronic portal imaging device (EPID) based in-vivo dose verification. EPIgray was commissioned based on the company's instructions. This involved ion chamber measurements and portal imaging of solid water blocks of various thicknesses between 5 and 35 cm. Field sizes varied between 2 x 2 cm2 and 20 x 20 cm2. The determined conversion factors were adjusted through an additional iterative process using treatment planning system calculations. Subsequently, evaluation was performed using treatment plans of single and opposed beams, as well as intensity modulated radiotherapy (IMRT) plans, based on recommendations from the task group report TG-119 to test for dose reconstruction accuracy. All tests were performed using blocks of solid water slabs as a phantom. For single square fields, the dose at isocenter was reconstructed within 3% accuracy in EPIgray compared to the treatment planning system dose. Similarly, the relative deviation of the total dose was accurately reconstructed within 3% for all IMRT plans with points placed inside a high-dose region near the isocenter. Predictions became less accurate than < 5% when the evaluation point was outside the treatment target. Dose at points 5 cm or more away from the isocenter or within an avoidance structure was reconstructed less reliably. EPIgray formalism accuracy is adequate for an efficient error detection system with verifications performed in high-dose volumes. It provides immediate intra-fractional feedback on the delivery of treatment plans without affecting the treatment beam. Besides the EPID, no additional hardware is required. The software evaluates local point dose measurements to verify treatment plan delivery and patient positioning within 5% accuracy, depending on the placement of evaluation points

    Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments.

    Get PDF
    A clinical workflow was developed for urgent palliative radiotherapy treatments that integrates patient simulation, planning, quality assurance, and treatment in one 30-minute session. This has been successfully tested and implemented clinically on a linac with MV CBCT capabilities. To make this approach available to all clinics equipped with common imaging systems, dose calculation accuracy based on treatment sites was assessed for other imaging units. We evaluated the feasibility of palliative treatment planning using on-board imaging with respect to image quality and technical challenges. The purpose was to test multiple systems using their commercial setup, disregarding any additional in-house development. kV CT, kV CBCT, MV CBCT, and MV CT images of water and anthropomorphic phantoms were acquired on five different imaging units (Philips MX8000 CT Scanner, and Varian TrueBeam, Elekta VersaHD, Siemens Artiste, and Accuray Tomotherapy linacs). Image quality (noise, contrast, uniformity, spatial resolution) was evaluated and compared across all machines. Using individual image value to density calibrations, dose calculation accuracies for simple treatment plans were assessed for the same phantom images. Finally, image artifacts on clinical patient images were evaluated and compared among the machines. Image contrast to visualize bony anatomy was sufficient on all machines. Despite a high noise level and low contrast, MV CT images provided the most accurate treatment plans relative to kV CT-based planning. Spatial resolution was poorest for MV CBCT, but did not limit the visualization of small anatomical structures. A comparison of treatment plans showed that monitor units calculated based on a prescription point were within 5% difference relative to kV CT-based plans for all machines and all studied treatment sites (brain, neck, and pelvis). Local dose differences >5% were found near the phantom edges. The gamma index for 3%/3 mm criteria was ≥95% in most cases. Best dose calculation results were obtained when the treatment isocenter was near the image isocenter for all machines. A large field of view and immediate image export to the treatment planning system were essential for a smooth workflow and were not provided on all devices. Based on this phantom study, image quality of the studied kV CBCT, MV CBCT, and MV CT on-board imaging devices was sufficient for treatment planning in all tested cases. Treatment plans provided dose calculation accuracies within an acceptable range for simple, urgently planned palliative treatments. However, dose calculation accuracy was compromised towards the edges of an image. Feasibility for clinical implementation should be assessed separately and may be complicated by machine specific features. Image artifacts in patient images and the effect on dose calculation accuracy should be assessed in a separate, machine-specific study. PACS number(s): 87.55.D-, 87.57.C-, 87.57.Q

    FAQs about Employees and Employee Benefits

    Get PDF
    This primer is an introduction to the basic laws of employee benefits. It is often assumed that there are legal impediments to employers providing benefits to phased retirees, part-time workers and the contingent workforce. From a benefits law perspective, this is really not true. By statute, self-employed workers are sometimes excluded from plans required to be employee-only but employers face few other prohibitions when designing their plans. From an employer’s perspective, there are far more impediments to excluding these workers from their benefit plans than including them. Tax law provides incentives to employers who sponsor plans and to workers who participate in them. But tax law also insists that this special treatment should not be available only to high-paid workers. So today’s regulatory structure is intended to compel employers to include a substantial number of rank-and-file and lower-paid workers in their plans in exchange for favorable tax treatment for high-paid workers. This primer illustrates this regulatory structure by focusing on the basic rules for eligibility and participation in the most common plans. It is in part an exercise in mapping the employee benefits universe. It is written from the perspective of an employer and highlights questions that an employer must answer when designing a particular plan. Those questions range from “who is an employee” to “how many low-paid workers must I include” to “what benefits may I offer and to whom?

    Simplifying intensity-modulated radiotherapy plans with fewer beam angles for the treatment of oropharyngeal carcinoma.

    Get PDF
    The first aim of the present study was to investigate the feasibility of using fewer beam angles to improve delivery efficiency for the treatment of oropharyngeal cancer (OPC) with inverse-planned intensity-modulated radiation therapy (IP-IMRT). A secondary aim was to evaluate whether the simplified IP-IMRT plans could reduce the indirect radiation dose. The treatment plans for 5 consecutive OPC patients previously treated with a forward-planned IMRT (FP-IMRT) technique were selected as benchmarks for this study. The initial treatment goal for these patients was to deliver 70 Gy to > or = 95% of the planning gross tumor volume (PTV-70) and 59.4 Gy to > or = 95% of the planning clinical tumor volume (PTV-59.4) simultaneously. Each case was re-planned using IP-IMRT with multiple beam-angle arrangements, including four complex IP-IMRT plans using 7 or more beam angles, and one simple IMRT plan using 5 beam angles. The complex IP-IMRT plans and simple IP-IMRT plans were compared to each other and to the FPIMRT plans by analyzing the dose coverage of the target volumes, the plan homogeneity, the dose-volume histograms of critical structures, and the treatment delivery parameters including delivery time and the total number of monitor units (MUs). When comparing the plans, we found no significant difference between the complex IP-IMRT, simple IP-IMRT, and FP-IMRT plans for tumor target coverage (PTV-70: p = 0.56; PTV-59.4: p = 0.20). The plan homogeneity, measured by the mean percentage isodose, did not significantly differ between the IP-IMRT and FP-IMRT plans (p = 0.08), although we observed a trend toward greater inhomogeneity of dose in the simple IP-IMRT plans. All IP-IMRT plans either met or exceeded the quality of the FP-IMRT plans in terms of dose to adjacent critical structures, including the parotids, spinal cord, and brainstem. As compared with the complex IP-IMRT plans, the simple IP-IMRT plans significantly reduced the mean treatment time (maximum probability for four pairwise comparisons: p = 0.0003). In conclusion, our study demonstrates that, as compared with complex IP-IMRT, simple IP-IMRT can significantly improve treatment delivery efficiency while maintaining similar target coverage and sparing of critical structures. However, the improved efficiency does not significantly reduce the total number of MUs nor the indirect radiation dose

    Dosimetric verification of the anisotropic analytical algorithm for radiotherapy treatment planning

    Get PDF
    BACKGROUND AND PURPOSE: To investigate the accuracy of photon dose calculations performed by the Anisotropic Analytical Algorithm, in homogeneous and inhomogeneous media and in simulated treatment plans. MATERIALS AND METHODS: Predicted dose distributions were compared with ionisation chamber and film measurements for a series of increasingly complex situations. Initially, simple and complex fields in a homogeneous medium were studied. The effect of inhomogeneities was investigated using a range of phantoms constructed of water, bone and lung substitute materials. Simulated treatment plans were then produced using a semi-anthropomorphic phantom and the delivered doses compared to the doses predicted by the Anisotropic Analytical Algorithm. RESULTS: In a homogeneous medium, agreement was found to be within 2% dose or 2mm dta in most instances. In the presence of heterogeneities, agreement was generally to within 2.5%. The simulated treatment plan measurements agreed to within 2.5% or 2mm. Conclusions: The accuracy of the algorithm was found to be satisfactory at 6MV and 10MV both in homogeneous and inhomogeneous situations and in the simulated treatment plans. The algorithm was more accurate than the Pencil Beam Convolution model, particularly in the presence of low density heterogeneities

    DO HIGHLY COMPENSATED PARTICIPANTS INFLUENCE THE MANAGEMENT OF QUALIFIED PENSION PLANS?

    Get PDF
    This paper presents evidence of favorable management of qualified pension plans with large proportion of highly compensated employees. Defined-benefit pension plans that are dominated by highly compensated employees tend to contribute beyond the minimum amount required under Internal Revenue Code (flow effect) resulting in overfunded plans (stock effect) and then use aggressive actuarial assumptions to disguise the overfunding to avoid visibility costs (reporting effect). This favored treatment is less likely when the sponsoring firm has an active labor union (monitoring effect). These actions contradict the provisions under the Employee Retirement Income Security Act and the Internal Revenue Code, which prohibit favorable treatment for highly compensated employees.Defined-Benefit Pension plans; highly compensated employees; funding; actuarial assumptions
    corecore