1,371,556 research outputs found

    Transport Properties of Solitons

    Get PDF
    We calculate in this article the transport coefficients which characterize the dynamics of solitons in quantum field theory using the methods of dissipative quantum systems. We show how the damping and diffusion coefficients of soliton-like excitations can be calculated using the integral functional formalism. The model obtained in this article has new features which cannot be obtained in the standard models of dissipation in quantum mechanics.Comment: 16 Pages, RevTeX, Preprint UIU

    Chalker-Coddington model described by an S-matrix with odd dimensions

    Full text link
    The Chalker-Coddington network model is often used to describe the transport properties of quantum Hall systems. By adding an extra channel to this model, we introduce an asymmetric model with profoundly different transport properties. We present a numerical analysis of these transport properties and consider the relevance for realistic systems.Comment: 7 pages, 4 figures. To appear in the EP2DS-17 proceeding

    The temperature dependence of FeRh’s transport properties

    Get PDF
    The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an abrupt decrease at the metamagnetic transition point, T = Tm between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for T ≥ 0 K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of Tm, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement

    Transport properties of single atoms

    Full text link
    We present a systematic study of the ballistic electron conductance through sp and 3d transition metal atoms attached to copper and palladium crystalline electrodes. We employ the 'ab initio' screened Korringa-Kohn-Rostoker Green's function method to calculate the electronic structure of nanocontacts while the ballistic transmission and conductance eigenchannels were obtained by means of the Kubo approach as formulated by Baranger and Stone. We demonstrate that the conductance of the systems is mainly determined by the electronic properties of the atom bridging the macroscopic leads. We classify the conducting eigenchannels according to the atomic orbitals of the contact atom and the irreducible representations of the symmetry point group of the system that leads to the microscopic understanding of the conductance. We show that if impurity resonances in the density of states of the contact atom appear at the Fermi energy, additional channels of appropriate symmetry could open. On the other hand the transmission of the existing channels could be blocked by impurity scattering.Comment: RevTEX4, 9 pages, 9 figure

    Robust Transport Properties in Graphene

    Full text link
    Two-dimensional Dirac fermions are used to discuss quasiparticles in graphene in the presence of impurity scattering. Transport properties are completely dominated by diffusion. This may explain why recent experiments did not find weak localization in graphene. The diffusion coefficient of the quasiparticles decreases strongly with increasing strength of disorder. Using the Kubo formalism, however, we find a robust minimal conductivity that is independent of disorder. This is a consequence of the fact that the change of the diffusion coefficient is fully compensated by a change of the number of delocalized quasiparticle states.Comment: 4 pages, 1 figur
    • …
    corecore