6,008 research outputs found

    Tensor Product Structures, Entanglement, and Particle Scattering

    Get PDF
    Particle systems admit a variety of tensor product structures (TPSs) depending on the complete system of commuting observables chosen for the analysis. Different notions of entanglement are associated with these different TPSs. Global symmetry transformations and dynamical transformations factor into products of local unitary operators with respect to certain TPSs and not with respect to others. Symmetry-invariant and dynamical-invariant TPSs and corresponding measures of entanglement are defined for particle scattering systems.Comment: 7 pages, no figures; v.2 typo in references corrected, submitted to OSID as part of SMP3

    Nonempirical Density Functionals Investigated for Jellium: Spin-Polarized Surfaces, Spherical Clusters, and Bulk Linear Response

    Get PDF
    Earlier tests show that the Tao-Perdew-Staroverov-Scuseria (TPSS) nonempirical meta-generalized gradient approximation (meta-GGA) for the exchange-correlation energy yields more accurate surface energies than the local spin density (LSD) approximation for spin-unpolarized jellium. In this study, work functions and surface energies of a jellium metal in the presence of ``internal'' and external magnetic fields are calculated with LSD, Perdew-Burke-Ernzerhof (PBE) GGA, and TPSS meta-GGA and its predecessor, the nearly nonempirical Perdew-Kurth-Zupan-Blaha (PKZB) meta-GGA, using self-consistent LSD orbitals and densities. The results show that: (i) For normal bulk densities, the surface correlation energy is the same in TPSS as in PBE, as it should be since TPSS strives to represent a self-correlation correction to PBE; (ii) Normal surface density profiles can be scaled uniformly to the low-density or strong-interaction limit, and TPSS provides an estimate for that limit that is consistent with (but probably more accurate than) other estimates; (iii) For both normal and low densities, TPSS provides the same description of surface magnetism as PBE, suggesting that these approximations may be generally equivalent for magnetism. The energies of jellium spheres with up to 106 electrons are calculated using density functionals and compared to those obtained with Diffusion Quantum Monte Carlo data, including our estimate for the fixed-node correction. Finally we calculate the linear response of bulk jellium using these density functionals, and find that not only LSD but also PBE GGA and TPSS meta-GGA yield a linear-response in good agreement with that of the Quantum Monte Carlo method, for wavevectors of the perturbing external potential up to twice the Fermi wavevector.Comment: 14 pages, 9 figure

    Climbing the Density Functional Ladder: Non-Empirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids

    Full text link
    The electron density, its gradient, and the Kohn-Sham orbital kinetic energy density are the local ingredients of a meta-generalized gradient approximation (meta-GGA). We construct a meta-GGA density functional for the exchange-correlation energy that satisfies exact constraints without empirical parameters. The exchange and correlation terms respect {\it two} paradigms: one- or two-electron densities and slowly-varying densities, and so describe both molecules and solids with high accuracy, as shown by extensive numerical tests. This functional completes the third rung of ``Jacob's ladder'' of approximations, above the local spin density and GGA rungs.Comment: 4 pages, 1 figure, 1 table. updated with minor and yet necessary corrections. New references are adde

    Subsystem density functional theory with meta generalized gradient approximation exchange-correlation functionals

    Full text link
    We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes the problem and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.Comment: 14 pages, 3 figure

    Integration in the Little Rock Area, Part 3: Where do Students Move?

    Get PDF
    School integration has been a contentious policy issue in Little Rock since the 1950s. Recent charter expansions have raised questions about the current level of integration in public schools (charter and traditional) in the Little Rock Area. As part of our series on integration in Little Rock, this brief examines the differences in school-level demographics and academics between the schools students leave and the schools these students ente
    corecore