3,311 research outputs found

    Input-Output-to-State Stability

    Full text link
    This work explores Lyapunov characterizations of the input-output-to-state stability (IOSS) property for nonlinear systems. The notion of IOSS is a natural generalization of the standard zero-detectability property used in the linear case. The main contribution of this work is to establish a complete equivalence between the input-output-to-state stability property and the existence of a certain type of smooth Lyapunov function. As corollaries, one shows the existence of ``norm-estimators'', and obtains characterizations of nonlinear detectability in terms of relative stability and of finite-energy estimates.Comment: Many related papers can be found in: http://www.math.rutgers.edu/~sonta

    LSTM Neural Networks: Input to State Stability and Probabilistic Safety Verification

    Get PDF
    The goal of this paper is to analyze Long Short Term Memory (LSTM) neural networks from a dynamical system perspective. The classical recursive equations describing the evolution of LSTM can be recast in state space form, resulting in a time-invariant nonlinear dynamical system. A sufficient condition guaranteeing the Input-to-State (ISS) stability property of this class of systems is provided. The ISS property entails the boundedness of the output reachable set of the LSTM. In light of this result, a novel approach for the safety verification of the network, based on the Scenario Approach, is devised. The proposed method is eventually tested on a pH neutralization process.Comment: Accepted for Learning for dynamics & control (L4DC) 202

    A graph theoretic approach to input-to-state stability of switched systems

    Full text link
    This article deals with input-to-state stability (ISS) of discrete-time switched systems. Given a family of nonlinear systems with exogenous inputs, we present a class of switching signals under which the resulting switched system is ISS. We allow non-ISS systems in the family and our analysis involves graph-theoretic arguments. A weighted digraph is associated to the switched system, and a switching signal is expressed as an infinite walk on this digraph, both in a natural way. Our class of stabilizing switching signals (infinite walks) is periodic in nature and affords simple algorithmic construction.Comment: 14 pages, 1 figur
    corecore