18,095 research outputs found
The Role of Costimulatory Receptors of the Tumour Necrosis Factor Receptor Family in Atherosclerosis
Atherosclerosis is a chronic inflammatory disease that is mediated by both the innate and adaptive immune responses. T
lymphocytes, that together with B cells are the cellular effectors of the adaptive immune system, are currently endowed with crucial roles in the development and progression of atherosclerosis. Costimulatory receptors are a class of molecules expressed by T lymphocytes that regulate the activation of T cells and the generation of effector T-cell responses. In this review we present the roles of costimulatory receptors of the tumour necrosis factor receptor (TNFR) superfamily in atherosclerosis and discuss the implications for future therapies that could be used to specifically modulate the immune response of pathogenic T cells in this disease
Stochastic Binary Modeling of Cells in Continuous Time as an Alternative to Biochemical Reaction Equations
We have developed a coarse-grained formulation for modeling the dynamic
behavior of cells quantitatively, based on stochasticity and heterogeneity,
rather than on biochemical reactions. We treat each reaction as a
continuous-time stochastic process, while reducing each biochemical quantity to
a binary value at the level of individual cells. The system can be analytically
represented by a finite set of ordinary linear differential equations, which
provides a continuous time course prediction of each molecular state. In this
letter, we introduce our formalism and demonstrate it with several examples.Comment: 10pages, 3 figure
Complete genome sequence and taxonomic position of anguillid herpesvirus 1
Eel herpesvirus or anguillid herpesvirus 1 (AngHV1) frequently causes disease in freshwater eels. The complete genome sequence of AngHV1 and its taxonomic position within the family Alloherpesviridae were determined. Shotgun sequencing revealed a 249 kbp genome including an 11 kbp terminal direct repeat that contains 7 of the 136 predicted protein-coding open reading frames. Twelve of these genes are conserved among other members of the family Alloherpesviridae and another 28 genes have clear homologues in cyprinid herpesvirus 3. Phylogenetic analyses based on amino acid sequences of five conserved genes, including the ATPase subunit of the terminase, confirm the position of AngHV1 within the family Alloherpesviridae, where it is most closely related to the cyprinid herpesviruses. Our analyses support a recent proposal to subdivide the family Alloherpesviridae into two sister clades, one containing AngHV1 and the cyprinid herpesviruses and the other containing Ictalurid herpesvirus 1 and the ranid herpesviruses
Cell death and life in cancer: mathematical modeling of cell fate decisions
Tumor development is characterized by a compromised balance between cell life
and death decision mechanisms, which are tighly regulated in normal cells.
Understanding this process provides insights for developing new treatments for
fighting with cancer. We present a study of a mathematical model describing
cellular choice between survival and two alternative cell death modalities:
apoptosis and necrosis. The model is implemented in discrete modeling formalism
and allows to predict probabilities of having a particular cellular phenotype
in response to engagement of cell death receptors. Using an original parameter
sensitivity analysis developed for discrete dynamic systems, we determine the
critical parameters affecting cellular fate decision variables that appear to
be critical in the cellular fate decision and discuss how they are exploited by
existing cancer therapies
Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent Apoptosis, but are insensitive to direct activation with exogenous fas ligand
Introduction
Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma.
Aims
To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines.
Results
Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both.
Conclusions
1) Both primary and malignant cholangiocytes are relatively resistant to Fas–mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes
Semi-supervised prediction of protein interaction sentences exploiting semantically encoded metrics
Protein-protein interaction (PPI) identification is an integral component of many biomedical research and database curation tools. Automation of this task through classification is one of the key goals of text mining (TM). However, labelled PPI corpora required to train classifiers are generally small. In order to overcome this sparsity in the training data, we propose a novel method of integrating corpora that do not contain relevance judgements. Our approach uses a semantic language model to gather word similarity from a large unlabelled corpus. This additional information is integrated into the sentence classification process using kernel transformations and has a re-weighting effect on the training features that leads to an 8% improvement in F-score over the baseline results. Furthermore, we discover that some words which are generally considered indicative of interactions are actually neutralised by this process
Exosome membrane bound TNF-receptor for the treatment of rheumatoid arthritis
Rheumatoid arthritis (RA) is an autoimmune disease that causes painful inflammation of the synovium of the patient’s joints. However, current treatments for RA have a variety of drawbacks. They often are ineffective, expensive, invasive, risky, cause an immune response, and/ or only provide short term relief. Thus, we developed a new treatment for preventing inflammation: TNF-receptors anchored onto exosome surfaces. Exosomes are nanovesicles that are naturally secreted by most of the cells in our bodies. The many benefits of using exosomes include non-immunogenicity, natural stability in the body, and non-invasiveness. We have demonstrated that exosome membrane bound TNF-receptors have the ability to prevent inflammation in mammalian cells. The success of this project could lead to a clinically effective treatment of rheumatoid arthritis as well as other inflammatory diseases by opening the doors to further research and development of exosomal therapies
Fine tuning Exo2, a small molecule inhibitor of secretion and retrograde trafficking pathways in mammalian cells
The small molecule 4-hydroxy-3-methoxybenzaldehyde (5,6,7,8-tetrahydro[1]benzothieno[2,3-
d]pyrimidin-4-yl)hydrazone (Exo2) stimulates morphological changes at the mammalian Golgi and
trans-Golgi network that are virtually indistinguishable from those induced by brefeldin A. Both
brefeldin A and Exo2 protect cells from intoxication by Shiga(-like) toxins by acting on other
targets that operate at the early endosome, but do so at the cost of high toxicity to target cells. The
advantage of Exo2 is that it is much more amenable to chemical modification and here we report a
range of Exo2 analogues produced by modifying the tetrahydrobenzothienopyrimidine core, the
vanillin moiety and the hydrazone bond that links these two. These compounds were examined for
the morphological changes they stimulated at the Golgi stack, the trans Golgi network and the
transferrin receptor-positive early endosomes and this activity correlated with their inherent
toxicity towards the protein manufacturing ability of the cell and their protective effect against
toxin challenge. We have developed derivatives that can separate organelle morphology, target
specificity, innate toxicity and toxin protection. Our results provide unique compounds with low
toxicity and enhanced specificity to unpick the complexity of membrane trafficking networks
A novel inhibitor of p75-neurotrophin receptor improves functional outcomes in two models of traumatic brain injury.
The p75 neurotrophin receptor is important in multiple physiological actions including neuronal survival and neurite outgrowth during development, and after central nervous system injury. We have discovered a novel piperazine-derived compound, EVT901, which interferes with p75 neurotrophin receptor oligomerization through direct interaction with the first cysteine-rich domain of the extracellular region. Using ligand binding assays with cysteine-rich domains-fused p75 neurotrophin receptor, we confirmed that EVT901 interferes with oligomerization of full-length p75 neurotrophin receptor in a dose-dependent manner. Here we report that EVT901 reduces binding of pro-nerve growth factor to p75 neurotrophin receptor, blocks pro-nerve growth factor induced apoptosis in cells expressing p75 neurotrophin receptor, and enhances neurite outgrowth in vitro Furthermore, we demonstrate that EVT901 abrogates p75 neurotrophin receptor signalling by other ligands, such as prion peptide and amyloid-β. To test the efficacy of EVT901 in vivo, we evaluated the outcome in two models of traumatic brain injury. We generated controlled cortical impacts in adult rats. Using unbiased stereological analysis, we found that EVT901 delivered intravenously daily for 1 week after injury, reduced lesion size, protected cortical neurons and oligodendrocytes, and had a positive effect on neurological function. After lateral fluid percussion injury in adult rats, oral treatment with EVT901 reduced neuronal death in the hippocampus and thalamus, reduced long-term cognitive deficits, and reduced the occurrence of post-traumatic seizure activity. Together, these studies provide a new reagent for altering p75 neurotrophin receptor actions after injury and suggest that EVT901 may be useful in treatment of central nervous system trauma and other neurological disorders where p75 neurotrophin receptor signalling is affected
- …
