204,470 research outputs found
Monitoring cortical excitability during repetitive transcranial magnetic stimulation in children with ADHD: a single-blind, sham-controlled TMS-EEG study
Background: Repetitive transcranial magnetic stimulation (rTMS) allows non-invasive stimulation of the human brain. However, no suitable marker has yet been established to monitor the immediate rTMS effects on cortical areas in children.
Objective: TMS-evoked EEG potentials (TEPs) could present a well-suited marker for real-time monitoring. Monitoring is particularly important in children where only few data about rTMS effects and safety are currently available.
Methods: In a single-blind sham-controlled study, twenty-five school-aged children with ADHD received subthreshold 1 Hz-rTMS to the primary motor cortex. The TMS-evoked N100 was measured by 64-channel-EEG pre, during and post rTMS, and compared to sham stimulation as an intraindividual control condition.
Results: TMS-evoked N100 amplitude decreased during 1 Hz-rTMS and, at the group level, reached a stable plateau after approximately 500 pulses. N100 amplitude to supra-threshold single pulses post rTMS confirmed the amplitude reduction in comparison to the pre-rTMS level while sham stimulation had no influence. EEG source analysis indicated that the TMS-evoked N100 change reflected rTMS effects in the stimulated motor cortex. Amplitude changes in TMS-evoked N100 and MEPs (pre versus post 1 Hz-rTMS) correlated significantly, but this correlation was also found for pre versus post sham stimulation.
Conclusion: The TMS-evoked N100 represents a promising candidate marker to monitor rTMS effects on cortical excitability in children with ADHD. TMS-evoked N100 can be employed to monitor real-time effects of TMS for subthreshold intensities. Though TMS-evoked N100 was a more sensitive parameter for rTMS-specific changes than MEPs in our sample, further studies are necessary to demonstrate whether clinical rTMS effects can be predicted from rTMS-induced changes in TMS-evoked N100 amplitude and to clarify the relationship between rTMS-induced changes in TMS-evoked N100 and MEP amplitudes. The TMS-evoked N100 amplitude reduction after 1 Hz-rTMS could either reflect a globally decreased cortical response to the TMS pulse or a specific decrease in inhibition
Measurement of Fecal Testosterone Metabolites in Mice: Replacement of Invasive Techniques
Testosterone is the main reproductive hormone in male vertebrates and conventional methods to measure testosterone rely on invasive blood sampling procedures. Here, we aimed to establish a non-invasive alternative by assessing testosterone metabolites (TMs) in fecal and urinary samples in mice. We performed a radiometabolism study to determine the effects of daytime and sex on the metabolism and excretion pattern of radiolabeled TMs. We performed physiological and biological validations of the applied EIA to measure TMs and assessed diurnal fluctuations in TM excretions in male and female mice and across strains. We found that males excreted significantly more radiolabeled TMs via the feces (59%) compared to females (49.5%). TM excretion patterns differed significantly between urinary and fecal samples and were affected by the daytime of ³H-testosterone injection. Overall, TM excretion occurred faster in urinary than fecal samples. Peak excretion of fecal TMs occurred after 8 h when animals received the 3H-testosterone in the morning, or after 4 h when they received the 3H-testosterone injection in the evening. Daytime had no effect on the formed TMs; however, males and females formed different types of TMs. As expected, males showed higher fecal TM levels than females. Males also showed diurnal fluctuations in their TM levels but we found no differences in the TM levels of C57BL/6J and B6D2F1 hybrid males. Finally, we successfully validated our applied EIA (measuring 17β-hydroxyandrostane) by showing that hCG (human chorionic gonadotropin) administration increased TM levels, whereas castration reduced them. In conclusion, our EIA proved suitable for measuring fecal TMs in mice. Our non-invasive method to assess fecal TMs can be widely used in various research disciplines like animal behavior, reproduction, animal welfare, ecology, conservation, and biomedicine
Anomalous pressure behavior of tangential modes in single-wall carbon nanotubes
Using the molecular dynamics simulations and the force constant model we have
studied the Raman-active tangential modes (TMs) of a (10, 0) single-wall carbon
nanotube (SWNT) under hydrostatic pressure. With increasing pressure, the
atomic motions in the three TMs present obvious diversities. The pressure
derivative of E1g, A1g, and E2g mode frequency shows an increased value (), a
constant value (), and a negative value () above 5.3 GPa, respectively. The
intrinsic characteristics of TMs consumedly help to understand the essence of
the experimental T band of CNT. The anomalous pressure behavior of the TMs
frequencies may be originated from the tube symmetry alteration from D10h to
D2h then to C2h.Comment: 15 pages, 3 pages, submitted to Phys. Rev.
Towards ideal topological materials: Comprehensive database searches using symmetry indicators
Topological materials (TMs) showcase intriguing physical properties defying
expectations based on conventional materials, and hold promise for the
development of devices with new functionalities. While several theoretically
proposed TMs have been experimentally confirmed, extensive experimental
exploration of topological properties as well as applications in realistic
devices have been held back due to the lack of excellent TMs in which
interference from trivial Fermi surface states is minimized. We tackle this
problem in the present work by applying our recently developed method of
symmetry indicators to all non-magnetic compounds in the 230 space groups. An
exhaustive database search reveals thousands of TM candidates. Of these, we
highlight the excellent TMs, the 258 topological insulators and 165 topological
crystalline insulators which have either noticeable full band gap or a
considerable direct gap together with small trivial Fermi pockets. We also give
a list of 489 topological semimetals with the band crossing points located near
the Fermi level. All predictions obtained through standard generalized gradient
approximation (GGA) calculations were cross-checked with the modified
Becke-Johnson (MBJ) potential calculations, appropriate for narrow gap
materials. With the electronic and optical behavior around the Fermi level
dominated by the topologically non-trivial bands, these newly found TMs
candidates open wide possibilities for realizing the promise of TMs in
next-generation electronic devices.Comment: https://ccmp.nju.edu.cn/ for all the structures of the topological
materials and their electronic energy band plot
Intense 2-cycle laser pulses induce time-dependent bond-hardening in a polyatomic molecule
A time-dependent bond-hardening process is discovered in a polyatomic
molecule (tetramethyl silane, TMS) using few-cycle pulses of intense 800 nm
light. In conventional mass spectrometry, symmetrical molecules like TMS do not
exhibit a prominent molecular ion (TMS) as unimolecular dissociation into
[Si(CH) proceeds very fast. Under strong field and few-cycle
conditions, this dissociation channel is defeated by time-dependent
bond-hardening: a field-induced potential well is created in the TMS
potential energy curve that effectively traps a wavepacket. The time-dependence
of this bond hardening process is verified using longer-duration ( 100
fs) pulses; the relatively "slower" fall-off of optical field in such pulses
allows the initially trapped wavepacket to leak out, thereby rendering TMS
unstable once again. Our results are significant as they demonstrate (i)
optical generation of polyatomic ions that are normally inaccessible and (ii)
optical control of dynamics in strong fields, with distinct advantages over
weak-field control scenarios that demand a narrow bandwidth appropriate for a
specified transition.Comment: To appear in Phys. Rev. Let
Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI
It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions in modulating visual cortex may differ. Here we used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) concurrently, to show that stimulating right human intraparietal sulcus (IPS, at a site previously implicated in attention) elicits a pattern of activity changes in visual cortex that strongly depends on current visual context. Increased intensity of IPS TMS affected the blood oxygen level–dependent (BOLD) signal in V5/MT+ only when moving stimuli were present to drive this visual region, whereas TMS-elicited BOLD signal changes were observed in areas V1–V4 only during the absence of visual input. These influences of IPS TMS upon remote visual cortex differed significantly from corresponding effects of frontal (eye field) TMS, in terms of how they related to current visual input and their spatial topography for retinotopic areas V1–V4. Our results show directly that parietal and frontal regions can indeed have distinct patterns of causal influence upon functional activity in human visual cortex. Key words: attention, frontal cortex, functional magnetic resonance imaging, parietal cortex, top--down, transcranial magnetic stimulatio
Transcranial magnetic stimulation over sensorimotor cortex disrupts anticipatory reflex gain modulation for skilled action
Skilled interactions with new environments require flexible changes to the transformation from somatosensory signals to motor outputs. Transcortical reflex gains are known to be modulated according to task and environmental dynamics, but the mechanism of this modulation remains unclear. We examined reflex organization in the sensorimotor cortex. Subjects performed point- to- point arm movements into predictable force fields. When a small perturbation was applied just before the arm encountered the force field, reflex responses in the shoulder muscles changed according to the upcoming force field direction, indicating anticipatory reflex gain modulation. However, when a transcranial magnetic stimulation (TMS) was applied before the reflex response to such perturbations so that the silent period caused by TMS overlapped the reflex processing period, this modulation was abolished, while the reflex itself remained. Loss of reflex gain modulation could not be explained by reduced reflex amplitudes nor by peripheral effects of TMS on the muscles themselves. Instead, we suggest that TMS disrupted interneuronal networks in the sensorimotor cortex, which contribute to reflex gain modulation rather than reflex generation. We suggest that these networks normally provide the adaptability of rapid sensorimotor reflex responses by regulating reflex gains according to the current dynamical environment
- …
