223 research outputs found
2q13 microdeletion syndrome: Report on a newborn with additional features expanding the phenotype
We describe an additional newborn with craniofacial dysmorphisms, congenital heart disease, hypotonia, and a 2q13 deletion of 1.7 Mb. The clinical and genomic findings observed are consistent with the diagnosis of 2q13 microdeletion syndrome
A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion
Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis
Genetic Susceptibility Loci in Genomewide Association Study of Cluster Headache
Cefalea; Estudio de asociación del genoma completoCefalea; Estudi de l'associació del genoma completHeadache; Genomewide Association StudyObjective
Identifying common genetic variants that confer genetic risk for cluster headache.
Methods
We conducted a case–control study in the Dutch Leiden University Cluster headache neuro-Analysis program (LUCA) study population (n = 840) and unselected controls from the Netherlands Epidemiology of Obesity Study (NEO; n = 1,457). Replication was performed in a Norwegian sample of 144 cases from the Trondheim Cluster headache sample and 1,800 controls from the Nord-Trøndelag Health Survey (HUNT). Gene set and tissue enrichment analyses, blood cell-derived RNA-sequencing of genes around the risk loci and linkage disequilibrium score regression were part of the downstream analyses.
Results
An association was found with cluster headache for 4 independent loci (r2 < 0.1) with genomewide significance (p < 5 × 10−8), rs11579212 (odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.33–1.72 near RP11-815 M8.1), rs6541998 (OR = 1.53, 95% CI = 1.37–1.74 near MERTK), rs10184573 (OR = 1.43, 95% CI = 1.26–1.61 near AC093590.1), and rs2499799 (OR = 0.62, 95% CI = 0.54–0.73 near UFL1/FHL5), collectively explaining 7.2% of the variance of cluster headache. SNPs rs11579212, rs10184573, and rs976357, as proxy SNP for rs2499799 (r2 = 1.0), replicated in the Norwegian sample (p < 0.05). Gene-based mapping yielded ASZ1 as possible fifth locus. RNA-sequencing indicated differential expression of POLR1B and TMEM87B in cluster headache patients.
Interpretation
This genomewide association study (GWAS) identified and replicated genetic risk loci for cluster headache with effect sizes larger than those typically seen in complex genetic disorders. ANN NEUROL 2021;90:203–21
Recommended from our members
Transcript specific regulation of expression influences susceptibility to multiple sclerosis.
Genome-wide association studies (GWAS) have identified over 100 loci containing single nucleotide variants (SNVs) that influence the risk of developing multiple sclerosis (MS). Most of these loci lie in non-coding regulatory regions of the genome that are active in immune cells and are therefore thought to modify risk by altering the expression of key immune genes. To explore this hypothesis we screened genes flanking MS-associated variants for evidence of allele specific expression (ASE) by quantifying the transcription of coding variants in linkage disequilibrium with MS-associated SNVs. In total, we were able to identify and successfully analyse 200 such coding variants (from 112 genes) in both CD4+ and CD8+ T cells from 106 MS patients and 105 controls. Fifty-six of these coding variants (from 43 genes) showed statistically significant evidence of ASE in one or both cell types. In the Lck interacting transmembrane adaptor 1 gene (LIME1), for example, we were able to show that in both cell types, the MS-associated variant rs2256814 increased the expression of some transcripts while simultaneously reducing the expression of other transcripts. In CD4+ cells from an additional independent set of 96 cases and 93 controls we were able to replicate the effect of this SNV on the balance of alternate LIME1 transcripts using qPCR (p = 5 × 10-24). Our data thus indicate that some of the MS-associated SNVs identified by GWAS likely exert their effects on risk by distorting the balance of alternate transcripts rather than by changing the overall level of gene expression
Interactions between inflammatory signals and the progesterone receptor in regulating gene expression in pregnant human uterine myocytes
The absence of a fall in circulating progesterone levels has led to the concept that human labour is associated with ‘functional progesterone withdrawal’ caused through changes in the expression or function of progesterone receptor (PR). At the time of labour, the human uterus is heavily infiltrated with inflammatory cells, which release cytokines to create a ‘myometrial inflammation’ via NF-κB activation. The negative interaction between NF-κB and PR, may represent a mechanism to account for ‘functional progesterone withdrawal’ at term. Conversely, PR may act to inhibit NF-κB function and so play a role in inhibition of myometrial inflammation during pregnancy. To model this inter-relationship, we have used small interfering (si) RNA-mediated knock-down of PR in human pregnant myocytes and whole genome microarray analysis to identify genes regulated through PR. We then activated myometrial inflammation using IL-1β stimulation to determine the role of PR in myometrial inflammation regulation. Through PR-knock-down, we found that PR regulates gene networks involved in myometrial quiescence and extracellular matrix integrity. Activation of myometrial inflammation was found to antagonize PR-induced gene expression, of genes normally upregulated via PR. We found that PR does not play a role in repression of pro-inflammatory gene networks induced by IL-1β and that only MMP10 was significantly regulated in opposite directions by IL-1β and PR. We conclude that progesterone acting through PR does not generally inhibit myometrial inflammation. Activation of myometrial inflammation does cause ‘functional progesterone withdrawal’ but only in the context of genes normally upregulated via PR
Genetic Susceptibility Loci in Genomewide Association Study of Cluster Headache
Publisher Copyright: © 2021 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.Objective: Identifying common genetic variants that confer genetic risk for cluster headache. Methods: We conducted a case–control study in the Dutch Leiden University Cluster headache neuro-Analysis program (LUCA) study population (n = 840) and unselected controls from the Netherlands Epidemiology of Obesity Study (NEO; n = 1,457). Replication was performed in a Norwegian sample of 144 cases from the Trondheim Cluster headache sample and 1,800 controls from the Nord-Trøndelag Health Survey (HUNT). Gene set and tissue enrichment analyses, blood cell-derived RNA-sequencing of genes around the risk loci and linkage disequilibrium score regression were part of the downstream analyses. Results: An association was found with cluster headache for 4 independent loci (r2 < 0.1) with genomewide significance (p < 5 × 10−8), rs11579212 (odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.33–1.72 near RP11-815 M8.1), rs6541998 (OR = 1.53, 95% CI = 1.37–1.74 near MERTK), rs10184573 (OR = 1.43, 95% CI = 1.26–1.61 near AC093590.1), and rs2499799 (OR = 0.62, 95% CI = 0.54–0.73 near UFL1/FHL5), collectively explaining 7.2% of the variance of cluster headache. SNPs rs11579212, rs10184573, and rs976357, as proxy SNP for rs2499799 (r2 = 1.0), replicated in the Norwegian sample (p < 0.05). Gene-based mapping yielded ASZ1 as possible fifth locus. RNA-sequencing indicated differential expression of POLR1B and TMEM87B in cluster headache patients. Interpretation: This genomewide association study (GWAS) identified and replicated genetic risk loci for cluster headache with effect sizes larger than those typically seen in complex genetic disorders. ANN NEUROL 2021;90:203–216.Peer reviewe
Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus
<p>Abstract</p> <p>Background</p> <p>The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by <it>Staphylococcus spp</it>. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by <it>S. epidermidis </it>and <it>S. aureus </it>was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance.</p> <p>Results</p> <p>The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by <it>S. aureus </it>than <it>S. epidermidis</it>. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line.</p> <p>Conclusions</p> <p>Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility towards <it>Staphylococcus </it>infections, and opens new fields for further investigation.</p
- …
