2 research outputs found

    Effects of high-density lipoprotein from patients with chronic kidney disease on endothelial function

    Full text link
    Zusammenfassung Die chronische Niereninsuffizienz (CKD) stellt einen bedeutenden Risikofaktor fĂŒr die Entstehung kardiovaskulĂ€rer Ereignisse dar. Bereits eine nur leichtgradig eingeschrĂ€nkte Nierenfunktion ist bereits mit einem erhöhten kardiovaskulĂ€ren Risiko assoziiert. High- density Lipoprotein (HDL) von Gesunden weist neben seiner Rolle im reversen Cholesterintransport bedeutende antiatherogene Eigenschaften auf. Allerdings zeigen aktuelle Studien, dass die vaskulĂ€ren Effekte von HDL sehr heterogen sein können. Ziel des Projektes war es, die vasoprotektiven Eigenschaften von HDL von Patienten mit einer chronischen Niereninsuffizienz zu untersuchen. Im Gegensatz zu HDL von Gesunden (HDLHealthy) fĂŒhrte die Inkubation von humanen aortalen Endothelzellen (HAEC) mit HDL von Nierenkranken (HDLCKD) zu einer dramatischen Hemmung der endothelialen Stickstoffmonoxid (NO) Produktion. Dieser Effekt war bereits mit HDL von Patienten mit nur leichtgradig eingeschrĂ€nkter Nierenfunktion zu beobachten. Im Mausmodell fĂŒhrte eine Injektion von HDLCKD zu einem Blutdruckanstieg, wĂ€hrend HDLHealthy den Blutdruck reduzierte. Ferner konnten wir zeigen, dass HDLCKD in HAEC die Produktion von Superoxid-Radikalen stimuliert. Mittels Massenspektromie konnten wir die Akkumulation von symmetrischem Dimethylarginin (SDMA) in HDLCKD aber nicht in HDLHealthy nachweisen. Außerdem konnten wir zeigen, dass die Inkorporation von SDMA in den HDL (HDLSDMA) Partikel zur VerĂ€nderung der endothelialen Eigenschaften von HDL fĂŒhrt. HDLSDMA hemmte die endotheliale NO-Produktion und förderte die Produktion von Superoxid-Radikalen. Weiter konnten wir nachweisen, dass die Effekte von HDLCKD als auch HDLSDMA durch eine Aktivierung des Toll-like Rezeptors-2 (TLR-2) auf der OberflĂ€che von Endothelzellen vermittelt werden. Im Gegensatz zu klassischen TLR-2 Liganden, die via TLR-2 zusammen mit den Co-Rezeptoren TLR-1 und TLR-6 die NF-ÎșB abhĂ€ngige Cytokinproduktion stimulieren, konnten wir erstmalig aufzeigen, dass fĂŒr die TLR-2-abhĂ€ngige Aktivierung von Endothelzellen durch HDLCKD und HDLSDMA diese Co-Rezeptoren nicht notwendig sind. HDLCKD und HDLSDMA fĂŒhren beiden ĂŒber eine Aktivierung des endothelialen TLR-2 zu einer direkten Hemmung der stimulatorischen Akt-abhĂ€ngigen Phosphorylierung der endothelialen NO Synthase (eNOS) sowie via Phosphorylierung von SAPK/JNK zu einer NADPH-Oxidase abhĂ€ngigen Produktion von Superoxid-Radikalen. Schließlich konnten wir nachweisen, dass die Reduktion der endothelialen NO-BioverfĂŒgbarkeit durch HDLCKD und HDLSDMA auch zu einer Aufhebung der anti-inflammatorischen Eigenschaften von HDL und der positiven Eigenschaften des HDL auf die Reparatur von EndothellĂ€sionen fĂŒhrt. Zusammenfassend konnten wir erstmals zeigen, dass HDL von Nierenkranken endothelialer Dysfunktion sowie einen Anstieg des Blutdrucks induziert. Wir konnten ferner nachweisen, dass die Akkumulation von SDMA im HDL von Nierenkranken die Umkehr der physiologischen Eigenschaften des HDLs hin zu einem gefĂ€ĂŸschĂ€digenden Partikel induziert. Insgesamt zeigen diese Ergebnisse einen neuen Zusammenhang zwischen endothelialer Dysfunktion, arterieller Hypertonie sowie dem angeborenen Immunsystem auf. Summary Chronic kidney disease (CKD) represents a potent cardiovascular risk factor. Thereby, a slightly reduced renal function is already associated with an elevated risk for cardiovascular events. Besides its role in the reverse cholesterol transport, high-density lipoprotein (HDL) from healthy subjects exerts several important vascular effects. However, recent evidence suggests that the vascular properties of HDL can be highly heterogeneous. The aim of the present project was to examine the vasoprotective effects of HDL from patients with CKD. In contrast to HDL from healthy subjects (HDLHealthy), incubation of human aortic endothelial cells (HAEC) with HDL from patients with CKD (HDLCKD) markedly inhibited endothelial nitric oxide (NO) production. Interestingly, this effect was already present with HDL from patients with incipient CKD. In a mouse model, HDLCKD increased the arterial blood pressure, whereas HDLHealthy reduced the arterial blood pressure. Moreover, we could show that HDLCKD induced the production of superoxide radicals in HAEC. Using a mass-spectrometry approach, we identified the accumulation of symmetric dimethylarginine (SDMA) in HDLCKD, but not in HDLHealthy. Moreover, we could demonstrate that incorporation of SDMA into HDL (HDLSDMA) inverts the vasoprotective properties of HDL. HDLSDMA inhibited endothelial NO production and stimulated superoxide production in HAEC. Subsequently, we could reveal that the adverse vascular effects of HDLHealthy as well as HDLSDMA are mediated by Toll-like receptor-2 (TLR-2) on the surface of endothelial cells. In contrast to classical TLR-2 ligand, in which hetero-dimers of TLR-1/2 or TLR2/6 mediate NF-ÎșB-dependent cytokine secretion, we could show for the first time that TLR-2 dependent endothelial activation by HDLCKD or HDLSDMA is co-receptor independent. Moreover, we found that activation of endothelial TLR-2 by HDLCKD or HDLSDMA directly reduces the Akt-dependent stimulatory phosphorylation of endothelial NO synthase (eNOS) and stimulates the NADPH-oxidase dependent endothelial superoxide production via phosphorylation of SAPK/JNK. Moreover, our results indicate that the reduced endothelial NO bioavailability in response to HDLCKD or HDLSDMA suppresses the anti-inflammatory properties of HDL as well as the effects of HDL on endothelial repair. In summary, we could show for the first time that HDLCKD induces endothelial dysfunction and increases arterial blood pressure. Moreover, we identified SDMA in the HDL fraction as the culprit transforming HDLCKD from a vasoprotective into a noxious particle. Of note, these findings reveal a novel link between endothelial dysfunction, hypertension and innate immunity

    Characterization of Filifactor alocis and its immune evasion strategies employed against human neutrophils.

    Get PDF
    Periodontal disease is among the most common of inflammatory conditions and is caused by bacterial and host derived factors. The presence of bacteria drives the recruitment of neutrophils, professional phagocytes, to migrate to specific oral sites where they produce potent antimicrobials to kill their target. However, this inflammation and production of antimicrobials must be strictly regulated to minimize collateral host tissue damage. Human neutrophils recognized the oral pathogen Filifactor alocis through Toll-like receptor (TLR) 2 and upon binding, activated both p38 MAPK and ERK signaling pathways, known to be involved in neutrophil cell migration and degranulation. F. alocis also stimulated secretory vesicle and specific granule exocytosis and enhanced chemokinetic and chemotactic migration to interleukin (IL)-8, a key chemoattractant found in the oral cavity (Chapter 2). Once these challenged neutrophils have arrived at their targeted site, they will employ oxidative-mediated killing mechanisms, operating intracellularly in the bacterial-containing phagosome, and extracellularly, in the extracellular space. Neutrophils effectively perform phagocytosis to internalize F. alocis into their phagosomal compartment, however minimal intracellular respiratory burst response is produced. In addition, F. alocis-challenged neutrophils produced minimal superoxide release, however the bacterial challenge primed neutrophils for an enhanced respiratory burst response. F. alocis survived neutrophil oxygen-dependent intracellular and extracellular killing mechanisms up to 4 h post-infection (Chapter 3). Activated neutrophils can also undergo neutrophil extracellular trap (NET) formation as a means to trap and potentially kill targets. NETs have been described to be formed in the oral cavity in response to oral biofilms. F. alocis failed to induce NETs from neutrophils, which may indicate this bacterium is unique to the oral cavity, as other oral bacteria Streptococcus gordonii and Peptoanaerobacter stomatis induce NETs. However, F. alocis can manipulate neutrophils and reduce their NET formation capacities to known pharmacological (PMA) and bacterial (S. gordonii) inducers (Chapter 4). Overall, our results are the first to show how F. alocis effectively evades human neutrophil killing mechanisms and manipulates some of their functional responses. These results provide information about the pathogenic potential of F. alocis which would help delineate the role of this emerging pathogen in the development of periodontal disease
    corecore