3 research outputs found

    THz Electronics for Data Centre Wireless Links - the TERAPOD Project

    Get PDF
    This paper presents an overview of the terahertz (THz) resonant tunneling diode (RTD) technology that will be used as one of the approaches towards wireless data centres as envisioned on the eU H2020 TERAPOD project. We show an example 480 gm × 680 gm THz source chip at 300 GHz employing a 4 gm × 4 gm RTD device with 0.15 mW output power. We also show a basic laboratory wireless setup with this device in which up to 2.5 Gbps (limited by equipment) was demonstrated

    High efficiency bias stabilisation for resonant tunneling diode oscillators

    Get PDF
    We report on high-efficiency, high-power, and low-phase-noise resonant tunneling diode (RTD) oscillators operating at around 30 GHz. By employing a bias stabilization network, which does not draw any direct current (dc), the oscillators exhibit over a tenfold improvement in the dc-to-RF conversion efficiency (of up to 14.7%) compared to conventional designs (~0.9%). The oscillators provide a high maximum output power of around 2 dBm, and low phase noise of -100 and -113 dBc/Hz at 100 kHz and 1 MHz offset frequencies, respectively. The proposed approach will be invaluable for realizing very high efficiency, low phase noise, and high-power millimeter-wave (mm-wave) and terahertz (THz) RTD-based sources

    15 Gb/s 50-cm wireless link using a high power compact III-V 84 GHz transmitter

    Get PDF
    This paper reports on a 15-Gb/s wireless link that employs a high-power resonant tunneling diode (RTD) oscillator as a transmitter (Tx). The fundamental carrier frequency is 84 GHz and the maximum output power is 2 mW without any power amplifier. The reported performance is over a 50-cm link, with simple amplitude shift keying modulation utilized. The 15-Gb/s data link shows correctable bit error rate (BER) of 4.1 x 10⁻³, while the lower data rates of 10 and 5 Gb/s show a BER of 3.6 x 10⁻⁴ and 1.0 x 10⁻⁶, respectively. These results demonstrate that the RTD Tx is a promising candidate for the next-generation low-cost, compact, ultrahigh data rates wireless communication systems
    corecore