111,315 research outputs found
Terahertz generation in Czochralski grown periodically poled Mg:Y:LiNbO3 via optical rectification
Using a canonical pump-probe experimental technique, we studied the terahertz
(THz) waves generation and detection via optical rectification and mixing in
Czochralski-grown periodically poled Mg:Y:LiNbO3 (PPLN) crystals. THz waves
with frequencies at 1.37 THz and 0.68 THz as well as 1.8 THz were obtained for
PPLN with nonlinear grating periods of 0.03 and 0.06 mm, respectively. A
general theoretical model was developed by considering the dispersion and
damping of low frequency phonon-polariton mode. Our results show that THz waves
are generated in forward and backward directions via pumping pulse
rectification. The generated THz waves depend on the spectral shape of the
laser pulses, quasi-phase mismatches and dispersion characteristics of a
crystal.Comment: 25 pages, 4 figure
Single-cycle THz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3
Using the tilted-pulse-intensity-front scheme, we generate single-cycle
terahertz (THz) pulses by optical rectification of femtosecond laser pulses in
LiNbO3. In the THz generation setup, the condition that the image of the
grating coincides with the tilted-optical-pulse front is fulfilled to obtain
optimal THz beam characteristics and pump-to-THz conversion efficiency. The
designed focusing geometry enables tight focus of the collimated THz beam with
a spot size close to the diffraction limit, and the maximum THz electric field
of 1.2 MV/cm is obtained
Plasmonic terahertz detectors based on a high-electron mobility GaAs/AlGaAs heterostructure
In order to characterize magnetic-field (B) tunable THz plasmonic detectors,
spectroscopy experiments were carried out at liquid helium temperatures and
high magnetic fields on devices fabricated on a high electron mobility
GaAs/AlGaAs heterostructure. The samples were either gated (the gate of a
meander shape) or ungated. Spectra of a photovoltage generated by THz radiation
were obtained as a function of B at a fixed THz excitation from a THz laser or
as a function of THz photon frequency at a fixed B with a Fourier spectrometer.
In the first type of measurements, the wave vector of magnetoplasmons excited
was defined by geometrical features of samples. It was also found that the
magnetoplasmon spectrum depended on the gate geometry which gives an additional
parameter to control plasma excitations in THz detectors. Fourier spectra
showed a strong dependence of the cyclotron resonance amplitude on the
conduction-band electron filling factor which was explained within a model of
the electron gas heating with the THz radiation. The study allows to define
both the advantages and limitations of plasmonic devices based on high-mobility
GaAs/AlGaAs heterostructures for THz detection at low temperatures and high
magnetic fields.Comment: 8 pages, 11 figure
Analysis of 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system-bath interactions
We explore and describe the roles of inter-molecular vibrations employing a
Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL)
system-bath interactions, which we use to analyze two-dimensional (2D)
THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In
addition to linear absorption (1D IR), we calculated 2D Raman-THz-THz,
THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and
methanol using an equilibrium non-equilibrium hybrid MD simulation. The
calculated 1D IR and 2D THz-Raman signals are compared with results obtained
from the LL+SL BO model applied through use of hierarchal Fokker-Planck
equations with non-perturbative and non-Markovian noise. We find that all of
the qualitative features of the 2D profiles of the signals obtained from the MD
simulations are reproduced with the LL+SL BO model, indicating that this model
captures the essential features of the inter-molecular motion. We analyze the
fitted 2D profiles in terms of anharmonicity, nonlinear polarizability, and
dephasing time. The origins of the echo peaks of the librational motion and the
elongated peaks parallel to the probe direction are elucidated using optical
Liouville paths.Comment: 37 pages with 14 figures and 3 table
Strongly birefringent cut-wire pair structure as negative index wave plates at THz frequencies
We report a new approach for the design and fabrication of thin wave plates
with high transmission in the terahertz (THz) regime. The wave plates are based
on strongly birefringent cut-wire pair metamaterials that exhibit refractive
indices of opposite signs for two orthogonal polarization components of an
incident wave. As specific examples, we fabricated and investigated a quarter-
and a half-wave plate that revealed a peak intensity transmittance of 74% and
58% at 1.34 THz and 1.3 THz, respectively. Furthermore, the half wave plate
displayed a maximum figure of merit (FOM) of 23 at 1.3 THz where the refractive
index was -1.7. This corresponds to one of the highest FOMs reported at THz
frequencies so far. The presented results evidence that negative index
materials enter an application stage in terms of optical components for the THz
technology.Comment: 4 pages, 3 figures, submitted to Appl. Phys. Let
- …
