658 research outputs found

    The Long-term Dynamical Evolution of Disk-fragmented Multiple Systems in the Solar Neighborhood

    Get PDF
    The origin of very low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) at the low-mass end of the initial mass function is not yet fully understood. Gravitational fragmentation of circumstellar disks provides a possible mechanism for the formation of such low-mass objects. The kinematic and binary properties of very low-mass objects formed through disk fragmentation at early times (<10 Myr) were discussed in our previous paper. In this paper we extend the analysis by following the long-term evolution of diskfragmented systems up to an age of 10 Gyr, covering the ages of the stellar and substellar populations in the Galactic field. We find that the systems continue to decay, although the rates at which companions escape or collide with each other are substantially lower than during the first 10 Myr, and that dynamical evolution is limited beyond 1 Gyr. By t = 10 Gyr, about one third of the host stars are single, and more than half have only one companion left. Most of the other systems have two companions left that orbit their host star in widely separated orbits. A small fraction of companions have formed binaries that orbit the host star in a hierarchical triple configuration. The majority of such double-companion systems have internal orbits that are retrograde with respect to their orbits around their host stars. Our simulations allow a comparison between the predicted outcomes of disk fragmentation with the observed low-mass hydrogen-burning stars, BDs, and PMOs in the solar neighborhood. Imaging and radial velocity surveys for faint binary companions among nearby stars are necessary for verification or rejection of the formation mechanism proposed in this paper

    The dynamical evolution of low-mass hydrogen-burning stars, brown dwarfs, and planetary-mass objects formed through disk fragmentation

    Get PDF
    Theory and simulations suggest that it is possible to form low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) via disk fragmentation. As disk fragmentation results in the formation of several bodies at comparable distances to the host star, their orbits are generally unstable. Here, we study the dynamical evolution of these objects. We set up the initial conditions based on the outcomes of the smoothed-particle hydrodynamics simulations of Stamatellos & Whitworth, and for comparison we also study the evolution of systems resulting from lower-mass fragmenting disks. We refer to these two sets of simulations as set 1 and set 2, respectively. At 10 Myr, approximately half of the host stars have one companion left, and approximately 22% (set 1) to 9.8% (set 2) of the host stars are single. Systems with multiple secondaries in relatively stable configurations are common (about 30% and 44%, respectively). The majority of the companions are ejected within1 Myr with velocities mostly below 5 km s−1, with some runaway escapers with velocities over 30 km s−1. Roughly 6% (set 1) and 2% (set 2) of the companions pair up into very low-mass binary systems, resulting in respective binary fractions of 3.2% and 1.2%. The majority of these pairs escape as very low-mass binaries, while others remain bound to the host star in hierarchical configurations (often with retrograde inner orbits). Physical collisions with the host star (0.43 and 0.18 events per host star for set 1 and set 2, respectively) and between companions (0.08 and 0.04 events per host star for set 1 and set 2, respectively) are relatively common and their frequency increases with increasing disk mass. Our study predicts observable properties of very low-mass binaries, low-mass hierarchical systems, the BD desert, and free-floating BDs and PMOs in and near young stellar groupings, which can be used to distinguish between different formation scenarios of very low-mass stars, BDs, and PMO

    Mind your Ps and Qs: the Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars

    Full text link
    We compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, common proper motion, etc. Each observational technique is sensitive to companions across a narrow parameter space of orbital periods P and mass ratios q = M_comp/M_1. After combining the samples from the various surveys and correcting for their respective selection effects, we find the properties of companions to O-type and B-type main-sequence (MS) stars differ among three regimes. First, at short orbital periods P < 20 days (separations a < 0.4 AU), the binaries have small eccentricities e = 0.5, and exhibit a small excess of twins q > 0.95. Second, the companion frequency peaks at intermediate periods log P (days) = 3.5 (a = 10 AU), where the binaries have mass ratios weighted toward small values q = 0.2-0.3 and follow a Maxwellian "thermal" eccentricity distribution. Finally, companions with long orbital periods log P (days) = 5.5-7.5 (a = 200-5,000 AU) are outer tertiary components in hierarchical triples, and have a mass ratio distribution across q = 0.1-1.0 that is nearly consistent with random pairings drawn from the initial mass function. We discuss these companion distributions and properties in the context of binary star formation and evolution. We also reanalyze the binary statistics of solar-type MS primaries, taking into account that (30+/-10)% of single-lined spectroscopic binaries likely contain white dwarf companions instead of low-mass stellar secondaries. The mean frequency of stellar companions with q > 0.1 and log P (days) < 8.0 per primary increases from 0.50+/-0.04 for solar-type MS primaries to 2.1+/-0.3 for O-type MS primaries. We fit joint probability density functions f(M_1,q,P,e) to the corrected distributions, which can be incorporated into binary population synthesis studies.Comment: Accepted in ApJS; this version includes the updated figures, text, and equations as it appears in the accepted version; a Monte Carlo code that generates a population of zero-age MS single stars and binaries according to the corrected joint distribution f(M_1,q,P,e) is available upon request via emai

    Kinematically Detected Halo Streams

    Full text link
    Clues to the origins and evolution of our Galaxy can be found in the kinematics of stars around us. Remnants of accreted satellite galaxies produce over- densities in velocity-space, which can remain coherent for much longer than spatial over-densities. This chapter reviews a number of studies that have hunted for these accretion relics, both in the nearby solar-neighborhood and the more-distant stellar halo. Many observational surveys have driven this field forwards, from early work with the Hipparcos mission, to contemporary surveys like RAVE & SDSS. This active field continues to flourish, providing many new discoveries, and will be revolutionised as the Gaia mission delivers precise proper motions for a billion stars in our Galaxy.Comment: 27 pages, 10 figures. Chapter from Springer ASSL Volume entitled "Tidal Streams in the Local Group and Beyond". Affluent readers may wish to purchase the full volume here: http://link.springer.com/book/10.1007/978-3-319-19336-

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    The Nature and Nurture of Star Clusters

    Full text link
    Star clusters have hierarchical patterns in space and time, suggesting formation processes in the densest regions of a turbulent interstellar medium. Clusters also have hierarchical substructure when they are young, which makes them all look like the inner mixed parts of a pervasive stellar hierarchy. Young field stars share this distribution, presumably because some of them came from dissolved clusters and others formed in a dispersed fashion in the same gas. The fraction of star formation that ends up in clusters is apparently not constant, but may increase with interstellar pressure. Hierarchical structure explains why stars form in clusters and why many of these clusters are self-bound. It also explains the cluster mass function. Halo globular clusters share many properties of disk clusters, including what appears to be an upper cluster cutoff mass. However, halo globulars are self-enriched and often connected with dwarf galaxy streams. The mass function of halo globulars could have initially been like the power law mass function of disk clusters, but the halo globulars have lost their low mass members. The reasons for this loss are not understood. It could have happened slowly over time as a result of cluster evaporation, or it could have happened early after cluster formation as a result of gas loss. The latter model explains best the observation that the globular cluster mass function has no radial gradient in galaxies.Comment: to be published in IAUS266: Star Clusters Basic Galactic Building Blocks Throughout Time And Space, eds. Richard de Grijs and Jacques Lepine, Cambridge University Press, 11 page

    The Potential-Density Phase Shift Method for Determining the Corotation Radii in Spiral and Barred Galaxies

    Get PDF
    We have developed a new method for determining the corotation radii of density waves in disk galaxies, which makes use of the radial distribution of an azimuthal phase shift between the potential and density wave patterns. The approach originated from improved theoretical understandings of the relation between the morphology and kinematics of galaxies, and on the dynamical interaction between density waves and the basic-state disk stars which results in the secular evolution of disk galaxies. In this paper, we present the rationales behind the method, and the first application of it to several representative barred and grand-design spiral galaxies, using near-infrared images to trace the mass distributions, as well as to calculate the potential distributions used in the phase shift calculations. We compare our results with those from other existing methods for locating the corotations, and show that the new method both confirms the previously-established trends of bar-length dependence on galaxy morphological types, as well as provides new insights into the possible extent of bars in disk galaxies. Application of the method to a larger sample and the preliminary analysis of which show that the phase shift method is likely to be a generally-applicable, accurate, and essentially model-independent method for determining the pattern speeds and corotation radii of single or nested density wave patterns in galaxies. Other implications of this work are: most of the nearby bright disk galaxies appear to possess quasi-stationary spiral modes; that these density wave modes and the associated basic state of the galactic disk slowly transform over time; and that self-consistent N-particle systems contain physics not revealed by the passive orbit analysis approaches.Comment: 48 pages, 16 figures. Accepted for publication in the Astronomical Journa

    Not Alone: Tracing the Origins of Very Low Mass Stars and Brown Dwarfs Through Multiplicity Studies

    Full text link
    The properties of multiple stellar systems have long provided important empirical constraints for star formation theories, enabling (along with several other lines of evidence) a concrete, qualitative picture of the birth and early evolution of normal stars. At very low masses (VLM; M <~ 0.1 M_sun), down to and below the hydrogen burning minimum mass, our understanding of formation processes is not as clear, with several competing theories now under consideration. One means of testing these theories is through the empirical characterization of VLM multiple systems. Here, we review the results of various VLM multiplicity studies to date. These systems can be generally characterized as closely separated (93% have projected separations Delta < 20 AU) and near equal-mass (77% have M_2/M_1 >= 0.8) occurring infrequently (perhaps 10-30%). Both the frequency and maximum separation of stellar and brown dwarf binaries steadily decrease for lower system masses, suggesting that VLM binary formation and/or evolution may be a mass-dependent process. There is evidence for a fairly rapid decline in the number of loosely-bound systems below ~0.3 M_sun, corresponding to a factor of 10-20 increase in the minimum binding energy of VLM binaries as compared to more massive stellar binaries. This wide-separation ``desert'' is present among both field (~1-5 Gyr) and older (> 100 Myr) cluster systems, while the youngest (<~10 Myr) VLM binaries, particularly those in nearby, low-density star forming regions, appear to have somewhat different systemic properties. We compare these empirical trends to predictions laid out by current formation theories, and outline future observational studies needed to probe the full parameter space of the lowest mass multiple systems.Comment: 16 pages, 7 figures, contributed chapter for Planets and Protostars V meeting (October 2005); full table of VLM binaries can be obtained at http://paperclip.as.arizona.edu/~nsiegler/VLM_binarie
    corecore