613 research outputs found
Multi-stage genome-wide association study identifies new susceptibility locus for testicular germ cell tumour on chromosome 3q25
Recent genome-wide association studies (GWAS) and subsequent meta-analyses have identified over 25 SNPs at 18 loci, together accounting for >15% of the genetic susceptibility to testicular germ cell tumour (TGCT). To identify further common SNPs associated with TGCT, here we report a three-stage experiment, involving 4098 cases and 18 972 controls. Stage 1 comprised previously published GWAS analysis of 307 291 SNPs in 986 cases and 4946 controls. In Stage 2, we used previously published customised Illumina iSelect genotyping array (iCOGs) data across 694 SNPs in 1064 cases and 10 082 controls. Here, we report new genotyping of eight SNPs showing some evidence of association in combined analysis of Stage 1 and Stage 2 in an additional 2048 cases of TGCT and 3944 controls (Stage 3). Through fixed-effects meta-analysis across three stages, we identified a novel locus at 3q25.31 (rs1510272) demonstrating association with TGCT [per-allele odds ratio (OR) = 1.16, 95% confidence interval (CI) = 1.06-1.27; P = 1.2 × 10-9]
Expression profile of CREB knockdown in myeloid leukemia cells.
BackgroundThe cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, differentiation, and survival in several model systems, including neuronal and hematopoietic cells. We demonstrated that CREB is overexpressed in acute myeloid and leukemia cells compared to normal hematopoietic stem cells. CREB knockdown inhibits leukemic cell proliferation in vitro and in vivo, but does not affect long-term hematopoietic reconstitution.MethodsTo understand downstream pathways regulating CREB, we performed expression profiling with RNA from the K562 myeloid leukemia cell line transduced with CREB shRNA.ResultsBy combining our expression data from CREB knockdown cells with prior ChIP data on CREB binding we were able to identify a list of putative CREB regulated genes. We performed extensive analyses on the top genes in this list as high confidence CREB targets. We found that this list is enriched for genes involved in cancer, and unexpectedly, highly enriched for histone genes. Furthermore, histone genes regulated by CREB were more likely to be specifically expressed in hematopoietic lineages. Decreased expression of specific histone genes was validated in K562, TF-1, and primary AML cells transduced with CREB shRNA.ConclusionWe have identified a high confidence list of CREB targets in K562 cells. These genes allow us to begin to understand the mechanisms by which CREB contributes to acute leukemia. We speculate that regulation of histone genes may play an important role by possibly altering the regulation of DNA replication during the cell cycle
Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development
Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted
Validated SNPs for eGFR and their associations with albuminuria
Albuminuria and reduced glomerular filtration rate are manifestations of chronic kidney disease (CKD) that predict end-stage renal disease, acute kidney injury, cardiovascular disease and death. We hypothesized that SNPs identified in association with the estimated glomerular filtration rate (eGFR) would also be associated with albuminuria. Within the CKDGen Consortium cohort (n= 31 580, European ancestry), we tested 16 eGFR-associated SNPs for association with the urinary albumin-to-creatinine ratio (UACR) and albuminuria [UACR >25 mg/g (women); 17 mg/g (men)]. In parallel, within the CARe Renal Consortium (n= 5569, African ancestry), we tested seven eGFR-associated SNPs for association with the UACR. We used a Bonferroni-corrected P-value of 0.003 (0.05/16) in CKDGen and 0.007 (0.05/7) in CARe. We also assessed whether the 16 eGFR SNPs were associated with the UACR in aggregate using a beta-weighted genotype score. In the CKDGen Consortium, the minor A allele of rs17319721 in the SHROOM3 gene, known to be associated with a lower eGFR, was associated with lower ln(UACR) levels (beta = −0.034, P-value = 0.0002). No additional eGFR-associated SNPs met the Bonferroni-corrected P-value threshold of 0.003 for either UACR or albuminuria. In the CARe Renal Consortium, there were no associations between SNPs and UACR with a P< 0.007. Although we found the genotype score to be associated with albuminuria (P= 0.0006), this result was driven almost entirely by the known SHROOM3 variant, rs17319721. Removal of rs17319721 resulted in a P-value 0.03, indicating a weak residual aggregate signal. No alleles, previously demonstrated to be associated with a lower eGFR, were associated with the UACR or albuminuria, suggesting that there may be distinct genetic components for these trait
Phylogeny-wide conservation and change in developmental expression, cell-type specificity and functional domains of the transcriptional regulators of social amoebas
Background: Dictyostelid social amoebas self-organize into fruiting bodies, consisting of spores and up to four supporting cell types in the phenotypically most complex taxon group 4. High quality genomes and stage- and cell-type specific transcriptomes are available for representative species of each of the four taxon groups. To understand how evolution of gene regulation in Dictyostelia contributed to evolution of phenotypic complexity, we analysed conservation and change in abundance, functional domain architecture and developmental regulation of their transcription factors (TFs).Results: We detected 440 sequence-specific TFs across 33 families, of which 68% were upregulated in multicellular development and about half conserved throughout Dictyostelia. Prespore cells expressed two times more TFs than prestalk cells, but stalk cells expressed more TFs than spores, suggesting that gene expression events that define spores occur earlier than those that define stalk cells. Changes in TF developmental expression, but not in TF abundance or functional domains occurred more frequently between group 4 and groups 1-3, than between the more distant branches formed by groups 1+2 and 3+4.Conclusions: Phenotypic innovation is correlated with changes in TF regulation, rather than functional domain- or TF acquisition. The function of only 34 TFs is known. Of 12 TFs essential for cell differentiation, 9 are expressed in the cell type for which they are required. The information acquired here on conserved cell type specifity of 120 additional TFs can effectively guide further functional analysis, while observed evolutionary change in TF developmental expression may highlight how genotypic change caused phenotypic innovation
The Functional Consequences of Variation in Transcription Factor Binding
One goal of human genetics is to understand how the information for precise
and dynamic gene expression programs is encoded in the genome. The interactions
of transcription factors (TFs) with DNA regulatory elements clearly play an
important role in determining gene expression outputs, yet the regulatory logic
underlying functional transcription factor binding is poorly understood. Many
studies have focused on characterizing the genomic locations of TF binding, yet
it is unclear to what extent TF binding at any specific locus has functional
consequences with respect to gene expression output. To evaluate the context of
functional TF binding we knocked down 59 TFs and chromatin modifiers in one
HapMap lymphoblastoid cell line. We then identified genes whose expression was
affected by the knockdowns. We intersected the gene expression data with
transcription factor binding data (based on ChIP-seq and DNase-seq) within 10
kb of the transcription start sites of expressed genes. This combination of
data allowed us to infer functional TF binding. On average, 14.7% of genes
bound by a factor were differentially expressed following the knockdown of that
factor, suggesting that most interactions between TF and chromatin do not
result in measurable changes in gene expression levels of putative target
genes. We found that functional TF binding is enriched in regulatory elements
that harbor a large number of TF binding sites, at sites with predicted higher
binding affinity, and at sites that are enriched in genomic regions annotated
as active enhancers.Comment: 30 pages, 6 figures (7 supplemental figures and 6 supplemental tables
available upon request to [email protected]). Submitted to PLoS
Genetic
Progestins Related to Progesterone and Testosterone Elicit Divergent Human Endometrial Transcriptomes and Biofunctions.
Progestins are widely used for the treatment of gynecologic disorders and alone, or combined with an estrogen, are used as contraceptives. While their potencies, efficacies and side effects vary due to differences in structures, doses and routes of administration, little is known about their effects on the endometrial transcriptome in the presence or absence of estrogen. Herein, we assessed the transcriptome and pathways induced by progesterone (P4) and the three most commonly used synthetic progestins, medroxyprogesterone acetate (MPA), levonorgestrel (LNG), and norethindrone acetate (NETA), on human endometrial stromal fibroblasts (eSF), key players in endometrial physiology and reproductive success. While there were similar transcriptional responses, each progestin induced unique genes and biofunctions, consistent with their structural similarities to progesterone (P4 and MPA) or testosterone (LNG and NETA), involving cellular proliferation, migration and invasion. Addition of estradiol (E2) to each progestin influenced the number of differentially expressed genes and biofunctions in P4 and MPA, while LNG and NETA signatures were more independent of E2. Together, these data suggest different mechanisms of action for different progestins, with progestin-specific altered signatures when combined with E2. Further investigation is warranted for a personalized approach in different gynecologic disorders, for contraception, and minimizing side effects associated with their use
A 2-step penalized regression method for family-based next-generation sequencing association studies
Large-scale genetic studies are often composed of related participants, and utilizing familial relationships can be cumbersome and computationally challenging. We present an approach to efficiently handle sequencing data from complex pedigrees that incorporates information from rare variants as well as common variants. Our method employs a 2-step procedure that sequentially regresses out correlation from familial relatedness and then uses the resulting phenotypic residuals in a penalized regression framework to test for associations with variants within genetic units. The operating characteristics of this approach are detailed using simulation data based on a large, multigenerational cohort
Dissecting interferon-induced transcriptional programs in human peripheral blood cells
Interferons are key modulators of the immune system, and are central to the control of many diseases. The response of immune cells to stimuli in complex populations is the product of direct and indirect effects, and of homotypic and heterotypic cell interactions. Dissecting the global transcriptional profiles of immune cell populations may provide insights into this regulatory interplay. The host transcriptional response may also be useful in discriminating between disease states, and in understanding pathophysiology. The transcriptional programs of cell populations in health therefore provide a paradigm for deconvoluting disease-associated gene expression profiles.We used human cDNA microarrays to (1) compare the gene expression programs in human peripheral blood mononuclear cells (PBMCs) elicited by 6 major mediators of the immune response: interferons alpha, beta, omega and gamma, IL12 and TNFalpha; and (2) characterize the transcriptional responses of purified immune cell populations (CD4+ and CD8+ T cells, B cells, NK cells and monocytes) to IFNgamma stimulation. We defined a highly stereotyped response to type I interferons, while responses to IFNgamma and IL12 were largely restricted to a subset of type I interferon-inducible genes. TNFalpha stimulation resulted in a distinct pattern of gene expression. Cell type-specific transcriptional programs were identified, highlighting the pronounced response of monocytes to IFNgamma, and emergent properties associated with IFN-mediated activation of mixed cell populations. This information provides a detailed view of cellular activation by immune mediators, and contributes an interpretive framework for the definition of host immune responses in a variety of disease settings
- …
