258,612 research outputs found
The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models
The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system
A classification of New Zealand’s terrestrial ecosystems
This study produces a comprehensive terrestrial ecosystem classification by subjectively constructing a heirarchy of perceived key environmental drivers.
Introduction: The ecosystem concept is at the centre of international agreements, New Zealand legislation, and modern policy and planning systems that aim to sustainably manage natural resources. All definitions of ecosystems include the concept of the physical environment being integrated with its biotic components. Functionally, the concept embodies disturbance cycles, and flows of energy, nutrients and non-living materials, with these processes underpinning the concept of ecosystem health or integrity. Since these processes operate at variable spatio-temporal scales, and species and communities intergrade variably along environmental gradients, there is no single optimal scale at which to apply the ecosystem concept. Rather, the openness and hierarchical nature of ecosystem processes lead to any one classification scale being viewed as nested within coarser and finer scale components.
One of the goals of the New Zealand Biodiversity Strategy is to ‘maintain and restore a full range of remaining habitats and ecosystems …’. However, although many environmental agencies and individuals can contribute to this goal, any investment decisions are currently being made in the absence of a comprehensive list of ecosystems or a systematic threat ranking. Therefore, classification of the full range of ecosystem types for New Zealand is overdue.
 
Up and away: ontogenic transference as a pathway for aerial dispersal of microplastics
Microplastics (MPs) are ubiquitous pollutants found in marine, freshwater and terrestrial ecosystems. With so many MPs in aquatic systems it is inevitable that they will be ingested by aquatic organisms, and be transferred up through the food chain. However, to date, no study has considered whether MPs can be transmitted by means of ontogenic transference i.e. between life stages that utilise different habitats. Here, we determine whether fluorescent polystyrene beads could transfer between Culex mosquito life stages and, particularly, could move into the flying adult stage. We show for the first time that MPs can be transferred ontogenically from a feeding (larva) into a non-feeding (pupa) life stage and subsequently into the adult terrestrial life stage. However, transference is dependent on particle size, with smaller 2 µm MPs transferring readily into pupae and adult stages, whilst 15 µm MPs transferred at a significantly reduced rate. Microplastics appear to accumulate in the Malpighian tubule renal excretion system. The transfer of MPs to the adults represents a potential aerial pathway to contamination of new environments. Thus, any organism that feeds on terrestrial life phases of freshwater insects could be impacted by MPs found in aquatic ecosystems
Representativeness of terrestrial ecosystems in Chile's protected area system
Because protected areas are a major means of conservation, the extent to which ecosystems are represented under different protection regimes needs to be ascertained. A gap analysis approach was used to assess the representativeness of Chile's terrestrial ecosystems in differing kinds of protected areas. Terrestrial ecosystems were described in terms of potential vegetation, employing three protection scenarios. Scenario 1 was based exclusively on the Chilean National System of Protected Wild Areas (SNASPE). Scenario 2 included all types of public protected areas, namely SNASPE, nature sanctuaries and Ministry of National Heritage lands. Scenario 3 included all items in Scenario 2, but also included private protected areas and biodiversity priority sites. There is insufficient protection of terrestrial ecosystems under the Scenario 2. In addition to the low level of ecosystem protection provided by state protected areas (only 42 of the 127 terrestrial ecosystems had >10% of their area protected), 23 terrestrial ecosystems were identified as having no protection at the national level. Gaps in protection were concentrated in the North (both coastal and inland desertic scrub), Central (thorny scrub, thorny forests, sclerophyllous forests and deciduous coastal forests) and Austral (steppe ecosystems) regions of Chile. These gaps include ecosystems that are of global conservation importanc
Focus on the impact of climate change on wetland ecosystem and carbon dynamics
The renewed growth in atmospheric methane (CH4)since 2007 after a decade of stabilization has drawn much attention to its causes and future trends. Wetlands are the single largest source of atmospheric CH4. Understanding wetland ecosystems and carbon dynamics is critical to the estimation of global CH4 and carbon budgets. After approximately 7 years of CH4 related research following the renewed growth in atmospheric CH4, Environmental Research Letters launched a special issue of research letters on wetland ecosystems and carbon dynamics in 2014. This special issue highlights recent developments in terrestrial ecosystem models and field measurements of carbon fluxes across different types of wetland ecosystems. The 14 research letters emphasize the importance of wetland ecosystems in the global CO2 and CH4 budget
Amplifying effects of land-use change on future atmospheric CO2 levels
We constructed a model to analyze the interactions between land-use change and atmospheric CO2 during the recent past and for the future. The primary impact of the conversion of forested lands to cultivated lands is to increase atmospheric CO2, via losses of biomass and soil carbon to the atmosphere. This increase is likely to continue in the next decades, but its magnitude can vary according to each land-use scenario. We show that this first-order effect is further amplified by the correlated diminution of terrestrial sinks, because when croplands replace forests, the turnover time of excess carbon in the biosphere decreases, and hence the sink capacity of terrestrial ecosystems decreases. This effect acts to further increase by up to 100 ppm the CO2 level reached by 2100, and it is ofthe same order of magnitude, although smaller, than climate-carbon feedbacks. Uncertainties on the magnitude of this land-use induced effect are large, because of uncertainties in the sink role of terrestrial ecosystems in the future and because of uncertainties inherent to the modeling of land-use induced carbon emissions. Such an extra rise in atmospheric CO2 is however partially offset by the ocean reservoir and by sinks operating over undisturbed, pristine ecosystems, suggesting that conserving pristine forests with long turnover times might be efficient in mitigating the greenhouse effectland-use change; carbon cycle; future scenarios
Global congruence of carbon storage and biodiversity in terrestrial ecosystems
Deforestation is a main driver of climate change and biodiversity loss. An incentive mechanism to reduce emissions from deforestation and forest degradation (REDD) is being negotiated under the United Nations Framework Convention on Climate Change. Here we use the best available global data sets on terrestrial biodiversity and carbon storage to map and investigate potential synergies between carbon and biodiversity-oriented conservation. A strong association (rS= 0.82) between carbon stocks and species richness suggests that such synergies would be high, but unevenly distributed. Many areas of high value for biodiversity could be protected by carbon-based conservation, while others could benefit from complementary funding arising from their carbon content. Some high-biodiversity regions, however, would not benefit from carbon-focused conservation, and could become under increased pressure if REDD is implemented. Our results suggest that additional gains for biodiversity conservation are possible, without compromising the effectiveness for climate change mitigation, if REDD takes biodiversity distribution into account
Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14
Processes in the soil remain among the least well-characterized components of the carbon cycle. Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts in many terrestrial ecosystems and account for a large fraction of photosynthate in a wide range of ecosystems; they therefore play a key role in the terrestrial carbon cycle. A large part of the fungal mycelium is outside the root ( the extraradical mycelium, ERM) and, because of the dispersed growth pattern and the small diameter of the hyphae (<5 micrometers), exceptionally difficult to study quantitatively. Critically, the longevity of these. ne hyphae has never been measured, although it is assumed to be short. To quantify carbon turnover in these hyphae, we exposed mycorrhizal plants to fossil ("carbon-14 - dead") carbon dioxide and collected samples of ERM hyphae ( up to 116 micrograms) over the following 29 days. Analyses of their carbon-14 content by accelerator mass spectrometry (AMS) showed that most ERM hyphae of AM fungi live, on average, 5 to 6 days. This high turnover rate reveals a large and rapid mycorrhizal pathway of carbon in the soil carbon cycle
- …
