783,064 research outputs found

    Tensor Transpose and Its Properties

    Full text link
    Tensor transpose is a higher order generalization of matrix transpose. In this paper, we use permutations and symmetry group to define? the tensor transpose. Then we discuss the classification and composition of tensor transposes. Properties of tensor transpose are studied in relation to tensor multiplication, tensor eigenvalues, tensor decompositions and tensor rank

    Nonnegative Tensor Factorization, Completely Positive Tensors and an Hierarchical Elimination Algorithm

    Full text link
    Nonnegative tensor factorization has applications in statistics, computer vision, exploratory multiway data analysis and blind source separation. A symmetric nonnegative tensor, which has a symmetric nonnegative factorization, is called a completely positive (CP) tensor. The H-eigenvalues of a CP tensor are always nonnegative. When the order is even, the Z-eigenvalue of a CP tensor are all nonnegative. When the order is odd, a Z-eigenvector associated with a positive (negative) Z-eigenvalue of a CP tensor is always nonnegative (nonpositive). The entries of a CP tensor obey some dominance properties. The CP tensor cone and the copositive tensor cone of the same order are dual to each other. We introduce strongly symmetric tensors and show that a symmetric tensor has a symmetric binary decomposition if and only if it is strongly symmetric. Then we show that a strongly symmetric, hierarchically dominated nonnegative tensor is a CP tensor, and present a hierarchical elimination algorithm for checking this. Numerical examples are also given

    Regularly Decomposable Tensors and Classical Spin States

    Get PDF
    A spin-jj state can be represented by a symmetric tensor of order N=2jN=2j and dimension 44. Here, jj can be a positive integer, which corresponds to a boson; jj can also be a positive half-integer, which corresponds to a fermion. In this paper, we introduce regularly decomposable tensors and show that a spin-jj state is classical if and only if its representing tensor is a regularly decomposable tensor. In the even-order case, a regularly decomposable tensor is a completely decomposable tensor but not vice versa; a completely decomposable tensors is a sum-of-squares (SOS) tensor but not vice versa; an SOS tensor is a positive semi-definite (PSD) tensor but not vice versa. In the odd-order case, the first row tensor of a regularly decomposable tensor is regularly decomposable and its other row tensors are induced by the regular decomposition of its first row tensor. We also show that complete decomposability and regular decomposability are invariant under orthogonal transformations, and that the completely decomposable tensor cone and the regularly decomposable tensor cone are closed convex cones. Furthermore, in the even-order case, the completely decomposable tensor cone and the PSD tensor cone are dual to each other. The Hadamard product of two completely decomposable tensors is still a completely decomposable tensor. Since one may apply the positive semi-definite programming algorithm to detect whether a symmetric tensor is an SOS tensor or not, this gives a checkable necessary condition for classicality of a spin-jj state. Further research issues on regularly decomposable tensors are also raised.Comment: published versio

    Concatenated image completion via tensor augmentation and completion

    Full text link
    This paper proposes a novel framework called concatenated image completion via tensor augmentation and completion (ICTAC), which recovers missing entries of color images with high accuracy. Typical images are second- or third-order tensors (2D/3D) depending if they are grayscale or color, hence tensor completion algorithms are ideal for their recovery. The proposed framework performs image completion by concatenating copies of a single image that has missing entries into a third-order tensor, applying a dimensionality augmentation technique to the tensor, utilizing a tensor completion algorithm for recovering its missing entries, and finally extracting the recovered image from the tensor. The solution relies on two key components that have been recently proposed to take advantage of the tensor train (TT) rank: A tensor augmentation tool called ket augmentation (KA) that represents a low-order tensor by a higher-order tensor, and the algorithm tensor completion by parallel matrix factorization via tensor train (TMac-TT), which has been demonstrated to outperform state-of-the-art tensor completion algorithms. Simulation results for color image recovery show the clear advantage of our framework against current state-of-the-art tensor completion algorithms.Comment: 7 pages, 6 figures, submitted to ICSPCS 201

    New electromagnetic conservation laws

    Get PDF
    The Chevreton superenergy tensor was introduced in 1964 as a counterpart, for electromagnetic fields, of the well-known Bel-Robinson tensor of the gravitational field. We here prove the unnoticed facts that, in the absence of electromagnetic currents, Chevreton's tensor (i) is completely symmetric, and (ii) has a trace-free divergence if Einstein-Maxwell equations hold. It follows that the trace of the Chevreton tensor is a rank-2, symmetric, trace-free, {\em conserved} tensor, which is different from the energy-momentum tensor, and nonetheless can be constructed for any test Maxwell field, or any Einstein-Maxwell spacetime.Comment: 6 page
    corecore