966 research outputs found

    Congestion Control using FEC for Conversational Multimedia Communication

    Full text link
    In this paper, we propose a new rate control algorithm for conversational multimedia flows. In our approach, along with Real-time Transport Protocol (RTP) media packets, we propose sending redundant packets to probe for available bandwidth. These redundant packets are Forward Error Correction (FEC) encoded RTP packets. A straightforward interpretation is that if no losses occur, the sender can increase the sending rate to include the FEC bit rate, and in the case of losses due to congestion the redundant packets help in recovering the lost packets. We also show that by varying the FEC bit rate, the sender is able to conservatively or aggressively probe for available bandwidth. We evaluate our FEC-based Rate Adaptation (FBRA) algorithm in a network simulator and in the real-world and compare it to other congestion control algorithms

    Unicast UDP Usage Guidelines for Application Designers

    Get PDF
    Publisher PD

    The QoSxLabel: a quality of service cross layer label

    Get PDF
    A quality of service cross layer label

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure

    Quality-adaptive media streaming

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2012Includes bibliographical references (leaves: 37-40)Text in English; Abstract: Turkish and Englishxi, 40 leavesIn this study, an adaptive method for maximizing network bandwidth utilization for real-time media streaming applications is presented. The proposed method implements a rate control approach over the transport protocol RTP. RTP is coupled with an existing multimedia codec, H.264. A controller that keeps the RTP packet loss fraction at a predefined reference point is implemented. During the course of the stream transmission, the information about the network state is generated by the RTP/RTCP and sent to the server by the clients. Packet loss fraction parameter is fed into the controller. Controlling the multimedia codec bitrate directly affects the packet transmission rate, therefore RTP packet transmission rate is also controlled. Two control approaches are proposed. Firstly, a PID controller is introduced. This PID controller is designed without any self adaptation and manually tuned to maximize all of the available bandwidth. Secondly, a model reference adaptive controller (MRAC) is proposed. This MRAC controller constantly adjusts its parameters according to a reference model. The output of the TCP Friendly Rate Control Algorithm (TFRC) is used as the model to keep the MRAC controller friendly towards other flows flows at a level that the application requires. Simulations are provided to demonstrate the operation of the proposed methods. In the simulations, a content streaming scenario is run against background traffic for the available bandwidth in a bottleneck network configuration

    On the quality of VoIP with DCCP for satellite communications

    Get PDF
    We present experimental results for the performance of selected voice codecs using DCCP with CCID4 congestion control over a satellite link. We evaluate the performance of both constant and variable data rate speech codecs for a number of simultaneous calls using the ITU E-model. We analyse the sources of packet losses and additionally analyse the effect of jitter which is one of the crucial parameters contributing to VoIP quality and has, to the best of our knowledge, not been considered previously in the published DCCP performance results. We propose modifications to the CCID4 algorithm and demonstrate how these improve the VoIP performance, without the need for additional link information other than what is already monitored by CCID4. We also demonstrate the fairness of the proposed modifications to other flows. Although the recently adopted changes to TFRC specification alleviate some of the performance issues for VoIP on satellite links, we argue that the characteristics of commercial satellite links necessitate consideration of further improvements. We identify the additional benefit of DCCP when used in VoIP admission control mechanisms and draw conclusions about the advantages and disadvantages of the proposed DCCP/CCID4 congestion control mechanism for use with VoIP applications
    corecore