6,350 research outputs found

    Performance Analysis of Traffic and Mobility Models on Mobile and Vehicular Ad Hoc Wireless Networks

    Get PDF
    Advances in wireless communication technology and the proliferation of mobile devices enable the capa- bilities of communicating with each other even in areas with no pre-existing communication infrastructure. Traffic and mobility models play an important role in evaluating the performance of these communication networks. Despite criticism and assumption from various researches on Transmission Control Protocols (TCP), weaknesses on Mobile Ad Hoc Network (MANET), and Vehicular Ad Hoc Network (VANET). A simulation was carried out to evaluate the performance of Constant Bit Rate, Variable Bit Rate and Transmission Control Protocol on MANET and VANET using DSR routing protocol. CBR, VBR, and TCP have different manufacturer operation mechanisms and these differences lead to significant performance of CBR and VBR over TCP with better throughput and less average maximal end-to-end delay. DSR was able to respond to link failure at low mobility which led to TCP’s performance in packets delivery

    Performance of TCP/UDP under Ad Hoc IEEE802.11

    Full text link
    TCP is the De facto standard for connection oriented transport layer protocol, while UDP is the De facto standard for transport layer protocol, which is used with real time traffic for audio and video. Although there have been many attempts to measure and analyze the performance of the TCP protocol in wireless networks, very few research was done on the UDP or the interaction between TCP and UDP traffic over the wireless link. In this paper, we tudy the performance of TCP and UDP over IEEE802.11 ad hoc network. We used two topologies, a string and a mesh topology. Our work indicates that IEEE802.11 as a ad-hoc network is not very suitable for bulk transfer using TCP. It also indicates that it is much better for real-time audio. Although one has to be careful here since real-time audio does require much less bandwidth than the wireless link bandwidth. Careful and detailed studies are needed to further clarify that issue.Comment: 9 pages, 5 figures, ICT 2003 (10th International Conference on Telecommunication

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol

    Remote Control and Monitoring of Smart Home Facilities via Smartphone with Wi-Fly

    Get PDF
    Due to the widespread ownership of smartphone devices, the application of mobile technologies to enhance the monitoring and control of smart home facilities has attracted much academic attention. This study indicates that tools already in the possession of the end user can be a significant part of the specific context-aware system in the smart home. The behaviour of the system in the context of existing systems will reflect the intention of the client. This model system offers a diverse architectural concept for Wireless Sensor Actuator Mobile Computing in a Smart Home (WiSAMCinSH) and consists of sensors and actuators in various communication channels, with different capacities, paradigms, costs and degree of communication reliability. This paper focuses on the utilization of end users’ smartphone applications to control home devices, and to enable monitoring of the context-aware environment in the smart home to fulfil the needs of the ageing population. It investigates the application of an iPhone to supervise smart home monitoring and control electrical devices, and through this approach, after initial setup of the mobile application, a user can control devices in the smart home from different locations and over various distances

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    When Should I Use Network Emulation?

    Get PDF
    The design and development of a complex system requires an adequate methodology and efficient instrumental support in order to early detect and correct anomalies in the functional and non-functional properties of the tested protocols. Among the various tools used to provide experimental support for such developments, network emulation relies on real-time production of impairments on real traffic according to a communication model, either realistically or not. This paper aims at simply presenting to newcomers in network emulation (students, engineers, ...) basic principles and practices illustrated with a few commonly used tools. The motivation behind is to fill a gap in terms of introductory and pragmatic papers in this domain. The study particularly considers centralized approaches, allowing cheap and easy implementation in the context of research labs or industrial developments. In addition, an architectural model for emulation systems is proposed, defining three complementary levels, namely hardware, impairment and model levels. With the help of this architectural framework, various existing tools are situated and described. Various approaches for modeling the emulation actions are studied, such as impairment-based scenarios and virtual architectures, real-time discrete simulation and trace-based systems. Those modeling approaches are described and compared in terms of services and we study their ability to respond to various designer needs to assess when emulation is needed
    corecore